Suppr超能文献

农村阿巴拉契亚地区的参与式 COVID-19 监测工具:实时疾病监测和区域响应。

Participatory COVID-19 Surveillance Tool in Rural Appalachia : Real-Time Disease Monitoring and Regional Response.

机构信息

6798 North Carolina Institute for Climate Studies, North Carolina State University, Asheville, NC, USA.

1801 Department of Geography and Planning, Appalachian State University, Boone, NC, USA.

出版信息

Public Health Rep. 2021 May;136(3):327-337. doi: 10.1177/0033354921990372. Epub 2021 Feb 18.

Abstract

INTRODUCTION

Few US studies have examined the usefulness of participatory surveillance during the coronavirus disease 2019 (COVID-19) pandemic for enhancing local health response efforts, particularly in rural settings. We report on the development and implementation of an internet-based COVID-19 participatory surveillance tool in rural Appalachia.

METHODS

A regional collaboration among public health partners culminated in the design and implementation of the COVID-19 Self-Checker, a local online symptom tracker. The tool collected data on participant demographic characteristics and health history. County residents were then invited to take part in an automated daily electronic follow-up to monitor symptom progression, assess barriers to care and testing, and collect data on COVID-19 test results and symptom resolution.

RESULTS

Nearly 6500 county residents visited and 1755 residents completed the COVID-19 Self-Checker from April 30 through June 9, 2020. Of the 579 residents who reported severe or mild COVID-19 symptoms, COVID-19 symptoms were primarily reported among women (n = 408, 70.5%), adults with preexisting health conditions (n = 246, 70.5%), adults aged 18-44 (n = 301, 52.0%), and users who reported not having a health care provider (n = 131, 22.6%). Initial findings showed underrepresentation of some racial/ethnic and non-English-speaking groups.

PRACTICAL IMPLICATIONS

This low-cost internet-based platform provided a flexible means to collect participatory surveillance data on local changes in COVID-19 symptoms and adapt to guidance. Data from this tool can be used to monitor the efficacy of public health response measures at the local level in rural Appalachia.

摘要

简介

很少有美国研究调查 2019 年冠状病毒病(COVID-19)大流行期间参与式监测对于加强当地卫生应对工作的有用性,特别是在农村地区。我们报告了在阿巴拉契亚农村地区开发和实施基于互联网的 COVID-19 参与式监测工具的情况。

方法

公共卫生合作伙伴之间的区域合作最终设计并实施了 COVID-19 自我检查器,这是一种本地在线症状跟踪器。该工具收集了参与者人口统计学特征和健康史的数据。然后邀请县居民参加自动每日电子随访,以监测症状进展、评估护理和检测障碍,并收集 COVID-19 检测结果和症状缓解数据。

结果

从 2020 年 4 月 30 日至 6 月 9 日,近 6500 名县居民访问了该网站,1755 名居民完成了 COVID-19 自我检查器。在报告有严重或轻度 COVID-19 症状的 579 名居民中,COVID-19 症状主要报告于女性(n = 408,70.5%)、有既往健康状况的成年人(n = 246,70.5%)、18-44 岁的成年人(n = 301,52.0%)和报告没有医疗保健提供者的用户(n = 131,22.6%)。初步结果表明,某些种族/族裔和非英语使用者群体代表性不足。

实际意义

这个低成本的互联网平台提供了一种灵活的方法,可以收集关于 COVID-19 症状在当地变化的参与式监测数据,并适应指导意见。该工具的数据可用于监测农村阿巴拉契亚地区地方一级公共卫生应对措施的效果。

相似文献

1
Participatory COVID-19 Surveillance Tool in Rural Appalachia : Real-Time Disease Monitoring and Regional Response.
Public Health Rep. 2021 May;136(3):327-337. doi: 10.1177/0033354921990372. Epub 2021 Feb 18.
3
COVID-19 Self-Reported Symptom Tracking Programs in the United States: Framework Synthesis.
J Med Internet Res. 2020 Oct 22;22(10):e23297. doi: 10.2196/23297.
5
Comparison of longitudinal trends in self-reported symptoms and COVID-19 case activity in Ontario, Canada.
PLoS One. 2022 Jan 11;17(1):e0262447. doi: 10.1371/journal.pone.0262447. eCollection 2022.
9
Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey.
Lancet Public Health. 2021 Jan;6(1):e30-e38. doi: 10.1016/S2468-2667(20)30282-6. Epub 2020 Dec 11.

引用本文的文献

2
Assessing and Addressing the Determinants of Appalachian Population Health: A Scoping Review.
J Appalach Health. 2023 Dec 1;5(3):85-102. doi: 10.13023/jah.0503.07. eCollection 2023.
3
Innovations in public health surveillance: An overview of novel use of data and analytic methods.
Can Commun Dis Rep. 2024 Apr 30;50(3-4):93-101. doi: 10.14745/ccdr.v50i34a02.
4
Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review.
JMIR Public Health Surveill. 2024 Jan 19;10:e49185. doi: 10.2196/49185.
6
COVID-19 preparedness and response in rural and remote areas: A scoping review.
PLOS Glob Public Health. 2023 Nov 15;3(11):e0002602. doi: 10.1371/journal.pgph.0002602. eCollection 2023.
9

本文引用的文献

1
Strategies for Digital Care of Vulnerable Patients in a COVID-19 World-Keeping in Touch.
JAMA Health Forum. 2020 Jun 1;1(6):e200734. doi: 10.1001/jamahealthforum.2020.0734.
2
JUE Insight: The determinants of the differential exposure to COVID-19 in New York city and their evolution over time.
J Urban Econ. 2022 Jan;127:103293. doi: 10.1016/j.jue.2020.103293. Epub 2020 Oct 28.
4
Prioritizing COVID-19 tests based on participatory surveillance and spatial scanning.
Int J Med Inform. 2020 Nov;143:104263. doi: 10.1016/j.ijmedinf.2020.104263. Epub 2020 Aug 27.
5
Socioeconomic bias in influenza surveillance.
PLoS Comput Biol. 2020 Jul 9;16(7):e1007941. doi: 10.1371/journal.pcbi.1007941. eCollection 2020 Jul.
8
Hospitalization and Mortality among Black Patients and White Patients with Covid-19.
N Engl J Med. 2020 Jun 25;382(26):2534-2543. doi: 10.1056/NEJMsa2011686. Epub 2020 May 27.
9
Mass-surveillance technologies to fight coronavirus spread: the case of Israel.
Nat Med. 2020 Aug;26(8):1167-1169. doi: 10.1038/s41591-020-0927-z.
10
Real-time tracking of self-reported symptoms to predict potential COVID-19.
Nat Med. 2020 Jul;26(7):1037-1040. doi: 10.1038/s41591-020-0916-2. Epub 2020 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验