Suppr超能文献

一种用于晶体转变的热阱结构增强的表面等离子体光热效应。

An enhanced plasmonic photothermal effect for crystal transformation by a heat-trapping structure.

作者信息

Kong Ting, Zhang Chengyun, Lu Jiangbo, Kang Bowen, Fu Zhengkun, Li Jinping, Yan Lei, Zhang Zhenglong, Zheng Hairong, Xu Hongxing

机构信息

School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China.

出版信息

Nanoscale. 2021 Feb 28;13(8):4585-4591. doi: 10.1039/d0nr06714h. Epub 2021 Feb 19.

Abstract

Photothermal utilization is an important approach for sustaining global ecological balance. Due to the enhancement of light absorption through surface plasmon resonance, silver or gold nanostructures can be used as efficient photothermal heat sources in visible and near-infrared regions. Herein, a heat-trapping system of self-assembled gold nanoislands with a thin AlO layer is designed to significantly enhance the photothermal effect, which can contribute to a fast crystal transformation. Compared with pure gold nanoislands, an approximately 10-fold enhancement of the photothermal conversion efficiency is observed by using the heat-trapping layer, which results from enhanced light absorption and efficient heat utilization. With the heat-trapping layer, a relatively high and stable photothermal conversion efficiency is realized even at low temperature, and the thermal stability of the plasmonic nanostructure is also observed to improve, especially for silver nanoislands used in air. These results provide a strong additional support for the further development of photothermal applications and offer an efficient pathway for the thermal manipulation of plasmons at the nanoscale.

摘要

光热利用是维持全球生态平衡的重要途径。由于通过表面等离子体共振增强了光吸收,银或金纳米结构可作为可见光和近红外区域高效的光热热源。在此,设计了一种具有薄AlO层的自组装金纳米岛热捕获系统,以显著增强光热效应,这有助于快速的晶体转变。与纯金纳米岛相比,使用热捕获层观察到光热转换效率提高了约10倍,这源于增强的光吸收和高效的热利用。有了热捕获层,即使在低温下也能实现相对较高且稳定的光热转换效率,并且还观察到等离子体纳米结构的热稳定性得到改善,特别是对于空气中使用的银纳米岛。这些结果为光热应用的进一步发展提供了有力的额外支持,并为纳米尺度等离子体的热操纵提供了一条有效途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验