Suppr超能文献

一种最优缓解大流行病的控制理论方法。

A control theory approach to optimal pandemic mitigation.

机构信息

Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.

出版信息

PLoS One. 2021 Feb 19;16(2):e0247445. doi: 10.1371/journal.pone.0247445. eCollection 2021.

Abstract

In the framework of homogeneous susceptible-infected-recovered (SIR) models, we use a control theory approach to identify optimal pandemic mitigation strategies. We derive rather general conditions for reaching herd immunity while minimizing the costs incurred by the introduction of societal control measures (such as closing schools, social distancing, lockdowns, etc.), under the constraint that the infected fraction of the population does never exceed a certain maximum corresponding to public health system capacity. Optimality is derived and verified by variational and numerical methods for a number of model cost functions. The effects of immune response decay after recovery are taken into account and discussed in terms of the feasibility of strategies based on herd immunity.

摘要

在同质易感染-恢复(SIR)模型框架内,我们使用控制理论方法来确定最佳的大流行缓解策略。我们推导出了在满足人口中感染比例永远不会超过对应公共卫生系统容量的某个最大值的约束下,同时最小化引入社会控制措施(如关闭学校、社交距离、封锁等)所产生的成本,以达到群体免疫的一般条件。我们通过变分和数值方法对一些模型成本函数进行了最优性推导和验证。我们还考虑了恢复后免疫反应衰减的影响,并根据基于群体免疫的策略的可行性进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dab/7894916/bac76540b81f/pone.0247445.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验