Suppr超能文献

一种最优缓解大流行病的控制理论方法。

A control theory approach to optimal pandemic mitigation.

机构信息

Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.

出版信息

PLoS One. 2021 Feb 19;16(2):e0247445. doi: 10.1371/journal.pone.0247445. eCollection 2021.

Abstract

In the framework of homogeneous susceptible-infected-recovered (SIR) models, we use a control theory approach to identify optimal pandemic mitigation strategies. We derive rather general conditions for reaching herd immunity while minimizing the costs incurred by the introduction of societal control measures (such as closing schools, social distancing, lockdowns, etc.), under the constraint that the infected fraction of the population does never exceed a certain maximum corresponding to public health system capacity. Optimality is derived and verified by variational and numerical methods for a number of model cost functions. The effects of immune response decay after recovery are taken into account and discussed in terms of the feasibility of strategies based on herd immunity.

摘要

在同质易感染-恢复(SIR)模型框架内,我们使用控制理论方法来确定最佳的大流行缓解策略。我们推导出了在满足人口中感染比例永远不会超过对应公共卫生系统容量的某个最大值的约束下,同时最小化引入社会控制措施(如关闭学校、社交距离、封锁等)所产生的成本,以达到群体免疫的一般条件。我们通过变分和数值方法对一些模型成本函数进行了最优性推导和验证。我们还考虑了恢复后免疫反应衰减的影响,并根据基于群体免疫的策略的可行性进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dab/7894916/bac76540b81f/pone.0247445.g001.jpg

相似文献

1
A control theory approach to optimal pandemic mitigation.
PLoS One. 2021 Feb 19;16(2):e0247445. doi: 10.1371/journal.pone.0247445. eCollection 2021.
3
Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25897-25903. doi: 10.1073/pnas.2008087117. Epub 2020 Sep 22.
4
Toward Achieving a Vaccine-Derived Herd Immunity Threshold for COVID-19 in the U.S.
Front Public Health. 2021 Jul 23;9:709369. doi: 10.3389/fpubh.2021.709369. eCollection 2021.
7
Containment strategies for the 2019 Novel Coronavirus: flatten the curve or crush it?
Eur J Epidemiol. 2020 Aug;35(8):789-790. doi: 10.1007/s10654-020-00656-x. Epub 2020 Jun 30.
8
Lockdowns and the COVID-19 pandemic: What is the endgame?
Scand J Public Health. 2021 Feb;49(1):37-40. doi: 10.1177/1403494820961293. Epub 2020 Sep 26.
9
Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus.
Math Biosci. 2020 Jul;325:108364. doi: 10.1016/j.mbs.2020.108364. Epub 2020 May 1.

引用本文的文献

1
Correction: A control theory approach to optimal pandemic mitigation.
PLoS One. 2024 Dec 10;19(12):e0315749. doi: 10.1371/journal.pone.0315749. eCollection 2024.
3
Feedback control of social distancing for COVID-19 via elementary formulae.
IFAC Pap OnLine. 2022;55(20):439-444. doi: 10.1016/j.ifacol.2022.09.134. Epub 2022 Sep 23.
4
Mean field control problems for vaccine distribution.
Res Math Sci. 2022;9(3):51. doi: 10.1007/s40687-022-00350-2. Epub 2022 Jul 27.
5
Optimal control for a SIR epidemic model with limited quarantine.
Sci Rep. 2022 Jul 22;12(1):12583. doi: 10.1038/s41598-022-16619-z.
7
Epidemic management with admissible and robust invariant sets.
PLoS One. 2021 Sep 24;16(9):e0257598. doi: 10.1371/journal.pone.0257598. eCollection 2021.
8
Relaxing restrictions at the pace of vaccination increases freedom and guards against further COVID-19 waves.
PLoS Comput Biol. 2021 Sep 2;17(9):e1009288. doi: 10.1371/journal.pcbi.1009288. eCollection 2021 Sep.
9
Changing readiness to mitigate SARS-CoV-2 steered long-term epidemic and social trajectories.
Sci Rep. 2021 Jul 6;11(1):13919. doi: 10.1038/s41598-021-93248-y.

本文引用的文献

1
Low case numbers enable long-term stable pandemic control without lockdowns.
Sci Adv. 2021 Oct 8;7(41):eabg2243. doi: 10.1126/sciadv.abg2243.
2
Digital herd immunity and COVID-19.
Phys Biol. 2021 Jun 23;18(4). doi: 10.1088/1478-3975/abf5b4.
3
Containment efficiency and control strategies for the corona pandemic costs.
Sci Rep. 2021 Mar 25;11(1):6848. doi: 10.1038/s41598-021-86072-x.
4
The challenges of containing SARS-CoV-2 via test-trace-and-isolate.
Nat Commun. 2021 Jan 15;12(1):378. doi: 10.1038/s41467-020-20699-8.
5
Optimal Control of the COVID-19 Pandemic with Non-pharmaceutical Interventions.
Bull Math Biol. 2020 Sep 4;82(9):118. doi: 10.1007/s11538-020-00795-y.
6
Bi-stability of SUDR+K model of epidemics and test kits applied to COVID-19.
Nonlinear Dyn. 2020;101(3):1635-1642. doi: 10.1007/s11071-020-05888-w. Epub 2020 Aug 20.
7
Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions.
Science. 2020 Jul 10;369(6500). doi: 10.1126/science.abb9789. Epub 2020 May 15.
8
Temporal dynamics in viral shedding and transmissibility of COVID-19.
Nat Med. 2020 May;26(5):672-675. doi: 10.1038/s41591-020-0869-5. Epub 2020 Apr 15.
9
With COVID-19, modeling takes on life and death importance.
Science. 2020 Mar 27;367(6485):1414-1415. doi: 10.1126/science.367.6485.1414-b.
10
The reproductive number of COVID-19 is higher compared to SARS coronavirus.
J Travel Med. 2020 Mar 13;27(2). doi: 10.1093/jtm/taaa021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验