Contreras Sebastian, Dehning Jonas, Mohr Sebastian B, Bauer Simon, Spitzner F Paul, Priesemann Viola
Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
Centre for Biotechnology and Bioengineering, Universidad de Chile, Beauchef 851, 8370456 Santiago, Chile.
Sci Adv. 2021 Oct 8;7(41):eabg2243. doi: 10.1126/sciadv.abg2243.
The traditional long-term solutions for epidemic control involve eradication or population immunity. Here, we analytically derive the existence of a third viable solution: a stable equilibrium at low case numbers, where test-trace-and-isolate policies partially compensate for local spreading events and only moderate restrictions remain necessary. In this equilibrium, daily cases stabilize around ten or fewer new infections per million people. However, stability is endangered if restrictions are relaxed or case numbers grow too high. The latter destabilization marks a tipping point beyond which the spread self-accelerates. We show that a lockdown can reestablish control and that recurring lockdowns are not necessary given sustained, moderate contact reduction. We illustrate how this strategy profits from vaccination and helps mitigate variants of concern. This strategy reduces cumulative cases (and fatalities) four times more than strategies that only avoid hospital collapse. In the long term, immunization, large-scale testing, and international coordination will further facilitate control.
传统的长期疫情防控解决方案包括根除疫情或实现群体免疫。在此,我们通过分析得出了第三种可行的解决方案:在低病例数情况下的稳定平衡状态,即检测-追踪-隔离政策部分抵消了局部传播事件的影响,仅需维持适度的限制措施。在这种平衡状态下,每日新增病例稳定在每百万人十例或更少。然而,如果放松限制或病例数增长过高,这种稳定性就会受到威胁。后一种不稳定标志着一个临界点,超过该点后疫情传播将自我加速。我们表明,实施封锁可以重新恢复控制,并且在持续适度减少接触的情况下,无需反复实施封锁。我们阐述了该策略如何从疫苗接种中获益,并有助于缓解令人担忧的变异毒株问题。与仅避免医院不堪重负的策略相比,该策略可将累计病例(和死亡人数)减少四倍之多。从长远来看,免疫接种、大规模检测和国际协调将进一步推动疫情防控工作。