Suppr超能文献

数字 herd 免疫与 COVID-19。

Digital herd immunity and COVID-19.

机构信息

Department of Physics, University of California, Berkeley, Berkeley, CA 94720, United States of America.

Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, United States of America.

出版信息

Phys Biol. 2021 Jun 23;18(4). doi: 10.1088/1478-3975/abf5b4.

Abstract

A population can be immune to epidemics even if not all of its individual members are immune to the disease, so long as sufficiently many are immune-this is the traditional notion of herd immunity. In the smartphone era a population can be immune to epidemics-a notion we call 'digital herd immunity', which is similarly an emergent characteristic of the population. This immunity arises because contact-tracing protocols based on smartphone capabilities can lead to highly efficient quarantining of infected population members and thus the extinguishing of nascent epidemics. When the disease characteristics are favorable and smartphone usage is high enough, the population is in this immune phase. As usage decreases there is a novel 'contact-tracing phase transition' to an epidemic phase. We present and study a simple branching-process model for COVID-19 and show that digital immunity is possible regardless of the proportion of non-symptomatic transmission.

摘要

人群即使并非所有个体成员对疾病都具有免疫力,也可能对传染病具有免疫力——这就是传统意义上的群体免疫概念。在智能手机时代,人群可以对传染病具有免疫力——我们称之为“数字群体免疫”,这也是人群的一种新兴特征。这种免疫力的产生是因为基于智能手机功能的接触者追踪方案可以对感染人群成员进行高效隔离,从而消灭新出现的传染病。当疾病特征有利且智能手机使用率足够高时,人群就处于这种免疫状态。随着使用率的降低,就会出现一种新的“接触者追踪相变”到传染病阶段。我们提出并研究了一种针对 COVID-19 的简单分支过程模型,表明无论无症状传播的比例如何,数字免疫都是可能的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验