O'Connor Ryan S, Le Pogam Audrey, Young Kevin G, Robitaille Francis, Choy Emily S, Love Oliver P, Elliott Kyle H, Hargreaves Anna L, Berteaux Dominique, Tam Andrew, Vézina François
Département de Biologie, Chimie et Géographie Université du Québec à Rimouski Rimouski QC Canada.
Groupe de recherche sur les environnements nordiques BORÉAS Rimouski Canada.
Ecol Evol. 2021 Jan 17;11(4):1609-1619. doi: 10.1002/ece3.7141. eCollection 2021 Feb.
Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures ( ) is unknown.Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (; ≈31 g, = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing and measured body temperature ( ), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).Buntings had an average (±) of 41.3 ± 0.2°C at thermoneutral and increased to a maximum of 43.5 ± 0.3°C. Buntings started panting at of 33.2 ± 1.7°C, with rapid increases in EWL starting at = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral , a markedly lower increase than seen in more heat-tolerant arid-zone species (e.g., ≥4.7× baseline rates). Heat-stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.Our results suggest that buntings' well-developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.
北极动物栖息在地球上一些最寒冷的环境中,并且已经进化出了生理机制,以便在极端寒冷的环境中尽量减少热量流失。然而,北极地区变暖的速度比全球平均水平更快,而北极动物对即使是适度高温( )的耐受能力究竟如何尚不清楚。我们使用流通式呼吸测定法,研究了作为耐寒专家的北极鸣禽雪鹀( ;体重约31克, = 42只)的耐热性和蒸发散热能力。我们将雪鹀暴露在不断升高的(温度)环境中,并测量其体温( )、静息代谢率(RMR)、蒸发失水率(EWL)以及蒸发散热效率(蒸发散热量与代谢产热量的比值)。在热中性温度下,雪鹀的平均(± )体温为41.3 ± 0.2°C,最高体温升至43.5 ± 0.3°C。雪鹀在33.2 ± 1.7°C时开始喘气,当温度达到34.6°C时,EWL迅速增加,这意味着它们在气温远低于其体温时就经历了热应激。在热中性温度下,EWL的最高速率仅为基线速率的2.9倍,这一增长明显低于耐热性更强的干旱地区物种(例如,≥4.7倍基线速率)。受热应激的雪鹀蒸发散热效率也很低,95%的个体无法通过蒸发散发出与其自身代谢产热量相当的热量。我们的研究结果表明,雪鹀发达的耐寒能力可能是以耐热性降低为代价的。随着北极地区变暖,以及这种和其他物种经历越来越多的热应激时期,有限的蒸发散热能力可能会迫使鸟类越来越多地依赖行为体温调节,比如尽量减少活动,但这是以性能下降或繁殖投入减少为代价的。