Suppr超能文献

合成大麻素中Δ-四氢大麻酚杂质的来源。

Origin of Δ-Tetrahydrocannabinol Impurity in Synthetic Cannabidiol.

机构信息

Mediteknology s.r.l. (CNR Spin-off Company), Lecce, Italy.

CNR NANOTEC-Institute of Nanotechnology, Lecce, Italy.

出版信息

Cannabis Cannabinoid Res. 2021 Feb 12;6(1):28-39. doi: 10.1089/can.2020.0021. eCollection 2021.

Abstract

Cannabidiol (CBD), the nonintoxicating constituent of cannabis, is largely employed for pharmaceutical and cosmetic purposes. CBD can be extracted from the plant or chemically synthesized. Impurities of psychotropic cannabinoids Δ-tetrahydrocannabinol (Δ-THC) and Δ-THC have been found in extracted CBD, thus hypothesizing a possible contamination from the plant. In this study, synthetic and extracted CBD samples were analyzed by ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry and the parameters that can be responsible of the conversion of CBD into THC were evaluated by an accelerated stability test. In synthetic and extracted CBD no trace of THC species was detected. In contrast, CBD samples stored in the dark at room temperature on the benchtop for 3 months showed the presence of such impurities. Experiments carried out under inert atmosphere in the absence of humidity or carbon dioxide led to no trace of THC over time even at high temperature. The results suggested that the copresence of carbon dioxide and water from the air could be the key for creating the acidic environment responsible for the cyclization of CBD. These findings suggest that it might be appropriate to review the storage conditions indicated on the label of commercially available CBD.

摘要

大麻素(CBD)是非成瘾性大麻成分,主要用于制药和化妆品用途。CBD 可以从植物中提取或化学合成。从提取的 CBD 中发现了精神活性大麻素 Δ-四氢大麻酚(Δ-THC)和 Δ-THC 的杂质,因此推测可能是从植物中污染而来。在这项研究中,通过超高效液相色谱-高分辨率质谱联用分析了合成和提取的 CBD 样品,并通过加速稳定性试验评估了可能导致 CBD 转化为 THC 的参数。在合成和提取的 CBD 中未检测到 THC 物质的痕迹。相反,在室温下在实验台上避光储存 3 个月的 CBD 样品显示出存在这些杂质。在惰性气氛下、没有湿度或二氧化碳的情况下进行的实验表明,即使在高温下,随着时间的推移也不会产生 THC 痕迹。结果表明,空气中的二氧化碳和水的共存可能是形成负责 CBD 环化的酸性环境的关键。这些发现表明,可能需要重新审查市售 CBD 标签上标明的储存条件。

相似文献

1
Origin of Δ-Tetrahydrocannabinol Impurity in Synthetic Cannabidiol.
Cannabis Cannabinoid Res. 2021 Feb 12;6(1):28-39. doi: 10.1089/can.2020.0021. eCollection 2021.
4
Cannabidiol and tetrahydrocannabinol concentrations in commercially available CBD E-liquids in Switzerland.
Forensic Sci Int. 2020 May;310:110261. doi: 10.1016/j.forsciint.2020.110261. Epub 2020 Mar 20.
5
Content versus Label Claims in Cannabidiol (CBD)-Containing Products Obtained from Commercial Outlets in the State of Mississippi.
J Diet Suppl. 2020;17(5):599-607. doi: 10.1080/19390211.2020.1766634. Epub 2020 May 20.
6
Will tetrahydrocannabinol be formed from cannabidiol in gastric fluid? An in vivo experiment.
Int J Legal Med. 2023 Jan;137(1):79-87. doi: 10.1007/s00414-022-02896-w. Epub 2022 Oct 3.
9
Synthetic route sourcing of illicit at home cannabidiol (CBD) isomerization to psychoactive cannabinoids using ion mobility-coupled-LC-MS/MS.
Forensic Sci Int. 2020 Mar;308:110173. doi: 10.1016/j.forsciint.2020.110173. Epub 2020 Jan 30.
10
On-the-Spot Detection and Speciation of Cannabinoids Using Organic Thin-Film Transistors.
ACS Sens. 2019 Oct 25;4(10):2706-2715. doi: 10.1021/acssensors.9b01150. Epub 2019 Aug 27.

引用本文的文献

2
A new HPLC method with multiple detection systems for impurity analysis and discrimination of natural versus synthetic cannabidiol.
Anal Bioanal Chem. 2024 Aug;416(20):4555-4569. doi: 10.1007/s00216-024-05396-5. Epub 2024 Jun 28.
3
Stable Isotope Ratio Analysis for Authentication of Natural Antioxidant Cannabidiol (CBD) from .
Antioxidants (Basel). 2023 Jul 14;12(7):1421. doi: 10.3390/antiox12071421.
4
Synthesis and pharmacological activity of the epimers of hexahydrocannabinol (HHC).
Sci Rep. 2023 Jul 8;13(1):11061. doi: 10.1038/s41598-023-38188-5.
6
Characterizing the degradation of cannabidiol in an e-liquid formulation.
Sci Rep. 2022 Nov 21;12(1):20058. doi: 10.1038/s41598-022-23910-6.
7
Comparison of the in vitro Anti-Inflammatory Effect of Cannabidiol to Dexamethasone.
Clin Cosmet Investig Dermatol. 2022 Sep 16;15:1959-1967. doi: 10.2147/CCID.S378798. eCollection 2022.
8
Selective Preparation and High Dynamic-Range Analysis of Cannabinoids in "CBD Oil" and Other Preparations.
J Nat Prod. 2022 Mar 25;85(3):634-646. doi: 10.1021/acs.jnatprod.1c00976. Epub 2022 Jan 6.

本文引用的文献

1
Are adverse effects of cannabidiol (CBD) products caused by tetrahydrocannabinol (THC) contamination?
F1000Res. 2019 Aug 8;8:1394. doi: 10.12688/f1000research.19931.7. eCollection 2019.
2
Is cannabidiol a scheduled controlled substance? Origin makes the difference.
Drug Discov Today. 2020 Apr;25(4):628-632. doi: 10.1016/j.drudis.2020.02.001. Epub 2020 Feb 13.
5
Phytochemical and Ecological Analysis of Two Varieties of Hemp ( L.) Grown in a Mountain Environment of Italian Alps.
Front Plant Sci. 2019 Oct 15;10:1265. doi: 10.3389/fpls.2019.01265. eCollection 2019.
6
Chemical and spectroscopic characterization data of 'cannabidibutol', a novel cannabidiol butyl analog.
Data Brief. 2019 Sep 5;26:104463. doi: 10.1016/j.dib.2019.104463. eCollection 2019 Oct.
7
Synthetic Strategies for (-)-Cannabidiol and Its Structural Analogs.
Chem Asian J. 2019 Nov 4;14(21):3749-3762. doi: 10.1002/asia.201901179. Epub 2019 Oct 8.
9
Cannabinoid Profiling of Hemp Seed Oil by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry.
Front Plant Sci. 2019 Feb 13;10:120. doi: 10.3389/fpls.2019.00120. eCollection 2019.
10
Translational Investigation of the Therapeutic Potential of Cannabidiol (CBD): Toward a New Age.
Front Immunol. 2018 Sep 21;9:2009. doi: 10.3389/fimmu.2018.02009. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验