Din Rahim Ud, Algehyne Ebrahem A
Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan.
Department of Mathematics, Faculty of Science, University of Tabuk, P.O.Box 741, Tabuk 71491, Saudi Arabia.
Results Phys. 2021 Apr;23:103970. doi: 10.1016/j.rinp.2021.103970. Epub 2021 Feb 19.
This paper is about a new COVID-19 SIR model containing three classes; Susceptible S(t), Infected I(t), and Recovered R(t) with the Convex incidence rate. Firstly, we present the subject model in the form of differential equations. Secondly, "the disease-free and endemic equilibrium" is calculated for the model. Also, the basic reproduction number is derived for the model. Furthermore, the Global Stability is calculated using the Lyapunov Function construction, while the Local Stability is determined using the Jacobian matrix. The numerical simulation is calculated using the Non-Standard Finite Difference (NFDS) scheme. In the numerical simulation, we prove our model using the data from Pakistan. "Simulation" means how S(t), I(t), and R(t) protection, exposure, and death rates affect people with the elapse of time.
本文介绍了一种新的新冠疫情SIR模型,该模型包含三个类别:易感者S(t)、感染者I(t)和康复者R(t),具有凸发病率。首先,我们以微分方程的形式给出了目标模型。其次,计算了该模型的“无病平衡点和地方病平衡点”。此外,还推导了该模型的基本再生数。进一步地,利用李雅普诺夫函数构造计算了全局稳定性,同时利用雅可比矩阵确定了局部稳定性。数值模拟采用非标准有限差分(NFDS)格式进行计算。在数值模拟中,我们使用来自巴基斯坦的数据验证了我们的模型。“模拟”指的是随着时间的推移,S(t)、I(t)和R(t)的防护、暴露和死亡率如何影响人群。