深度学习在头颈部和前列腺癌图像引导放疗中的应用评估。

Evaluation of Deep Learning to Augment Image-Guided Radiotherapy for Head and Neck and Prostate Cancers.

机构信息

Health Intelligence, Microsoft Research, Cambridge, United Kingdom.

Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom.

出版信息

JAMA Netw Open. 2020 Nov 2;3(11):e2027426. doi: 10.1001/jamanetworkopen.2020.27426.

Abstract

IMPORTANCE

Personalized radiotherapy planning depends on high-quality delineation of target tumors and surrounding organs at risk (OARs). This process puts additional time burdens on oncologists and introduces variability among both experts and institutions.

OBJECTIVE

To explore clinically acceptable autocontouring solutions that can be integrated into existing workflows and used in different domains of radiotherapy.

DESIGN, SETTING, AND PARTICIPANTS: This quality improvement study used a multicenter imaging data set comprising 519 pelvic and 242 head and neck computed tomography (CT) scans from 8 distinct clinical sites and patients diagnosed either with prostate or head and neck cancer. The scans were acquired as part of treatment dose planning from patients who received intensity-modulated radiation therapy between October 2013 and February 2020. Fifteen different OARs were manually annotated by expert readers and radiation oncologists. The models were trained on a subset of the data set to automatically delineate OARs and evaluated on both internal and external data sets. Data analysis was conducted October 2019 to September 2020.

MAIN OUTCOMES AND MEASURES

The autocontouring solution was evaluated on external data sets, and its accuracy was quantified with volumetric agreement and surface distance measures. Models were benchmarked against expert annotations in an interobserver variability (IOV) study. Clinical utility was evaluated by measuring time spent on manual corrections and annotations from scratch.

RESULTS

A total of 519 participants' (519 [100%] men; 390 [75%] aged 62-75 years) pelvic CT images and 242 participants' (184 [76%] men; 194 [80%] aged 50-73 years) head and neck CT images were included. The models achieved levels of clinical accuracy within the bounds of expert IOV for 13 of 15 structures (eg, left femur, κ = 0.982; brainstem, κ = 0.806) and performed consistently well across both external and internal data sets (eg, mean [SD] Dice score for left femur, internal vs external data sets: 98.52% [0.50] vs 98.04% [1.02]; P = .04). The correction time of autogenerated contours on 10 head and neck and 10 prostate scans was measured as a mean of 4.98 (95% CI, 4.44-5.52) min/scan and 3.40 (95% CI, 1.60-5.20) min/scan, respectively, to ensure clinically accepted accuracy. Manual segmentation of the head and neck took a mean 86.75 (95% CI, 75.21-92.29) min/scan for an expert reader and 73.25 (95% CI, 68.68-77.82) min/scan for a radiation oncologist. The autogenerated contours represented a 93% reduction in time.

CONCLUSIONS AND RELEVANCE

In this study, the models achieved levels of clinical accuracy within expert IOV while reducing manual contouring time and performing consistently well across previously unseen heterogeneous data sets. With the availability of open-source libraries and reliable performance, this creates significant opportunities for the transformation of radiation treatment planning.

摘要

重要性

个性化放射治疗计划依赖于高质量地勾画肿瘤靶区和周围危及器官(OARs)。这一过程给肿瘤学家增加了额外的时间负担,并导致专家和机构之间存在差异。

目的

探索可集成到现有工作流程并可用于放射治疗不同领域的临床可接受的自动勾画解决方案。

设计、地点和参与者:本质量改进研究使用了一个多中心成像数据集,包括来自 8 个不同临床站点和患者的 519 例盆腔和 242 例头颈部计算机断层扫描(CT)扫描,这些患者分别诊断为前列腺癌或头颈部癌。这些扫描是作为患者接受调强放射治疗治疗剂量计划的一部分获得的,时间为 2013 年 10 月至 2020 年 2 月。15 个不同的 OARs 由专家读者和放射肿瘤学家手动注释。模型在数据集的一个子集上进行训练,以自动勾画 OARs,并在内部和外部数据集上进行评估。数据分析于 2019 年 10 月至 2020 年 9 月进行。

主要结果和测量

在外部数据集上评估了自动勾画解决方案,并使用体积一致性和表面距离测量来量化其准确性。在观察者间变异性(IOV)研究中,将模型与专家注释进行了基准测试。通过测量手动校正和从头开始注释所花费的时间来评估临床实用性。

结果

纳入了 519 名参与者(100%为男性;390 名[75%]年龄为 62-75 岁)的盆腔 CT 图像和 242 名参与者(184 名[76%]为男性;194 名[80%]年龄为 50-73 岁)的头颈部 CT 图像。对于 13 个(15 个结构中的 13 个)结构,模型达到了专家 IOV 范围内的临床准确性水平(例如,左股骨,κ=0.982;脑干,κ=0.806),并且在内部和外部数据集上表现一致(例如,左股骨的平均[标准差]Dice 评分,内部与外部数据集:98.52%[0.50]比 98.04%[1.02];P=0.04)。为确保临床可接受的准确性,对 10 例头颈部和 10 例前列腺扫描的自动生成轮廓进行了校正,平均校正时间分别为 4.98(95%置信区间,4.44-5.52)分钟/扫描和 3.40(95%置信区间,1.60-5.20)分钟/扫描。对于专家读者,对头颈部进行手动分割的平均时间为 86.75(95%置信区间,75.21-92.29)分钟/扫描,对于放射肿瘤学家为 73.25(95%置信区间,68.68-77.82)分钟/扫描。自动生成的轮廓将时间减少了 93%。

结论和相关性

在这项研究中,模型在专家 IOV 范围内达到了临床准确性水平,同时减少了手动轮廓绘制时间,并在以前未见的异质数据集上表现一致。由于开源库的可用性和可靠的性能,这为放射治疗计划的转变创造了重大机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/7705593/a9ae9926fd66/jamanetwopen-e2027426-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索