Suppr超能文献

一种用于非侵入性诊断肺癌的新型成像与临床标志物整合技术。

A novel technology to integrate imaging and clinical markers for non-invasive diagnosis of lung cancer.

机构信息

BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY, USA.

Department of Chemical Engineering, University of Louisville, Louisville, KY, USA.

出版信息

Sci Rep. 2021 Feb 25;11(1):4597. doi: 10.1038/s41598-021-83907-5.

Abstract

This study presents a non-invasive, automated, clinical diagnostic system for early diagnosis of lung cancer that integrates imaging data from a single computed tomography scan and breath bio-markers obtained from a single exhaled breath to quickly and accurately classify lung nodules. CT imaging and breath volatile organic compounds data were collected from 47 patients. Spherical Harmonics-based shape features to quantify the shape complexity of the pulmonary nodules, 7th-Order Markov Gibbs Random Field based appearance model to describe the spatial non-homogeneities in the pulmonary nodule, and volumetric features (size) of pulmonary nodules were calculated from CT images. 27 VOCs in exhaled breath were captured by a micro-reactor approach and quantied using mass spectrometry. CT and breath markers were input into a deep-learning autoencoder classifier with a leave-one-subject-out cross validation for nodule classification. To mitigate the limitation of a small sample size and validate the methodology for individual markers, retrospective CT scans from 467 patients with 727 pulmonary nodules, and breath samples from 504 patients were analyzed. The CAD system achieved 97.8% accuracy, 97.3% sensitivity, 100% specificity, and 99.1% area under curve in classifying pulmonary nodules.

摘要

本研究提出了一种非侵入式、自动化的临床诊断系统,用于早期诊断肺癌,该系统结合了来自单次 CT 扫描的成像数据和来自单次呼气的呼吸生物标志物,以快速准确地对肺结节进行分类。从 47 名患者中收集了 CT 成像和呼吸挥发性有机化合物数据。使用基于球形谐波的形状特征来量化肺结节的形状复杂性,使用基于第 7 阶马尔可夫吉布斯随机场的外观模型来描述肺结节中的空间非均匀性,并且从 CT 图像计算肺结节的体积特征(大小)。通过微反应器方法捕获呼气中的 27 种 VOC,并使用质谱定量。将 CT 和呼吸标志物输入具有受试者外留一交叉验证的深度学习自动编码器分类器,用于结节分类。为了减轻小样本量的限制并验证个体标志物的方法,对 467 名患者的 727 个肺结节的回顾性 CT 扫描和 504 名患者的呼吸样本进行了分析。该 CAD 系统在对肺结节进行分类时达到了 97.8%的准确率、97.3%的灵敏度、100%的特异性和 99.1%的曲线下面积。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0352/7907202/e2b8d39766db/41598_2021_83907_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验