Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, Paraná, Brazil.
Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil.
Sci Rep. 2021 Feb 25;11(1):4619. doi: 10.1038/s41598-021-84165-1.
We apply a versatile growth model, whose growth rate is given by a generalised beta distribution, to describe the complex behaviour of the fatality curves of the COVID-19 disease for several countries in Europe and North America. We show that the COVID-19 epidemic curves not only may present a subexponential early growth but can also exhibit a similar subexponential (power-law) behaviour in the saturation regime. We argue that the power-law exponent of the latter regime, which measures how quickly the curve approaches the plateau, is directly related to control measures, in the sense that the less strict the control, the smaller the exponent and hence the slower the diseases progresses to its end. The power-law saturation uncovered here is an important result, because it signals to policymakers and health authorities that it is important to keep control measures for as long as possible, so as to avoid a slow, power-law ending of the disease. The slower the approach to the plateau, the longer the virus lingers on in the population, and the greater not only the final death toll but also the risk of a resurgence of infections.
我们应用一种通用的增长模型,其增长率由广义β分布给出,来描述 COVID-19 疾病在欧洲和北美的几个国家的死亡率曲线的复杂行为。我们表明,COVID-19 疫情曲线不仅可能呈现亚指数早期增长,而且在饱和阶段也可能表现出类似的亚指数(幂律)行为。我们认为,后一阶段的幂律指数,它衡量曲线接近平台的速度,与控制措施直接相关,因为控制措施越不严格,指数越小,疾病向终点发展的速度越慢。这里发现的幂律饱和是一个重要的结果,因为它向政策制定者和卫生当局发出信号,表明保持控制措施尽可能长的时间非常重要,以避免疾病缓慢、幂律地结束。曲线越接近平台,病毒在人群中的持续时间就越长,不仅最终的死亡人数而且再次感染的风险都会增加。