Tian Linfang, Rao Weixiong, Zhao Kai, Vo Huy T
School of Software Engineering, Tongji University, Shanghai, 201804, China.
J. Mack Robinson College of Business, Georgia State University, Atlanta, 30301, USA.
Sci Rep. 2024 Aug 15;14(1):18933. doi: 10.1038/s41598-024-69494-1.
British scholar Peter Taylor constructed the World City Network by analyzing the office networks of multinational companies, enabling a network perspective on world cities. However, this method has long been hindered by data deficiencies and update delays. In this study, we utilized publicly available, real-time updated data on global routes to construct the World City Network, thereby addressing the issues of data insufficiency and delayed updates in the existing model. For the first time, advanced Graph Convolutional Networks were employed to analyze the World City Network, and we introduced GCNRank. Finally, we compared GCNRank with other centrality measures and found that GCNRank provides a more detailed representation of city rankings and effectively avoids local optima.
英国学者彼得·泰勒通过分析跨国公司的办公网络构建了世界城市网络,从而实现了从网络视角看待世界城市。然而,这种方法长期以来一直受到数据不足和更新延迟的阻碍。在本研究中,我们利用公开可用的、实时更新的全球航线数据构建世界城市网络,从而解决了现有模型中数据不足和更新延迟的问题。首次采用先进的图卷积网络来分析世界城市网络,并引入了GCNRank。最后,我们将GCNRank与其他中心性度量进行比较,发现GCNRank能更详细地呈现城市排名,并有效避免局部最优。