Kumaravel Vignesh, Nair Keerthi M, Mathew Snehamol, Bartlett John, Kennedy James E, Manning Hugh G, Whelan Barry J, Leyland Nigel S, Pillai Suresh C
Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland.
Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland.
Chem Eng J. 2021 Jul 15;416:129071. doi: 10.1016/j.cej.2021.129071. Epub 2021 Feb 23.
Engineering of self-disinfecting surfaces to constrain the spread of SARS-CoV-2 is a challenging task for the scientific community because the human coronavirus spreads through respiratory droplets. Titania (TiO) nanocomposite antimicrobial coatings is one of the ideal remedies to disinfect pathogens (virus, bacteria, fungi) from common surfaces under light illumination. The photocatalytic disinfection efficiency of recent TiO nanocomposite antimicrobial coatings for surfaces, dental and orthopaedic implants are emphasized in this review. Mostly, inorganic metals (. copper (Cu), silver (Ag), manganese (Mn), ), non-metals (. fluorine (F), calcium (Ca), phosphorus (P)) and two-dimensional materials (. MXenes, MOF, graphdiyne) were incorporated with TiO to regulate the charge transfer mechanism, surface porosity, crystallinity, and the microbial disinfection efficiency. The antimicrobial activity of TiO coatings was evaluated against the most crucial pathogenic microbes such as methicillin-resistant , , T2 bacteriophage, H1N1, HCoV-NL63, vesicular stomatitis virus, bovine coronavirus. Silane functionalizing agents and polymers were used to coat the titanium (Ti) metal implants to introduce superhydrophobic features to avoid microbial adhesion. TiO nanocomposite coatings in dental and orthopaedic metal implants disclosed exceptional bio-corrosion resistance, durability, biocompatibility, bone-formation capability, and long-term antimicrobial efficiency. Moreover, the commercial trend, techno-economics, challenges, and prospects of antimicrobial nanocomposite coatings are also discussed briefly.
设计自消毒表面以抑制新型冠状病毒传播对科学界来说是一项具有挑战性的任务,因为人类冠状病毒通过呼吸道飞沫传播。二氧化钛(TiO)纳米复合抗菌涂层是在光照下对常见表面的病原体(病毒、细菌、真菌)进行消毒的理想方法之一。本文综述了近期用于表面、牙科和骨科植入物的TiO纳米复合抗菌涂层的光催化消毒效率。大多数情况下,无机金属(如铜(Cu)、银(Ag)、锰(Mn))、非金属(如氟(F)、钙(Ca)、磷(P))和二维材料(如MXenes、MOF、石墨炔)与TiO结合,以调节电荷转移机制、表面孔隙率、结晶度和微生物消毒效率。评估了TiO涂层对最关键的致病微生物的抗菌活性,如耐甲氧西林金黄色葡萄球菌、大肠杆菌、T2噬菌体、H1N1、新型冠状病毒NL63、水疱性口炎病毒、牛冠状病毒。使用硅烷官能化剂和聚合物涂覆钛(Ti)金属植入物,以引入超疏水特性,避免微生物粘附。牙科和骨科金属植入物中的TiO纳米复合涂层具有出色的生物耐腐蚀性、耐久性生物相容性、骨形成能力和长期抗菌效率。此外,还简要讨论了抗菌纳米复合涂层的商业趋势、技术经济性、挑战和前景。