Cooper Kelvin, Baddeley Christopher, French Bernie, Gibson Katherine, Golden James, Lee Thiam, Pierre Sadrach, Weiss Brent, Yang Jason
KC Pharma Consulting, 1513 Harbor Drive, Sarasota, Florida 34239, United States.
CAS, A Division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States.
ACS Omega. 2021 Feb 5;6(7):4857-4877. doi: 10.1021/acsomega.0c05303. eCollection 2021 Feb 23.
A unique approach to bioactivity and chemical data curation coupled with random forest analyses has led to a series of target-specific and cross-validated predictive feature fingerprints (PFF) that have high predictability across multiple therapeutic targets and disease stages involved in the severe acute respiratory syndrome due to coronavirus 2 (SARS-CoV-2)-induced COVID-19 pandemic, which include plasma kallikrein, human immunodeficiency virus (HIV)-protease, nonstructural protein (NSP)5, NSP12, Janus kinase (JAK) family, and AT-1. The approach was highly accurate in determining the matched target for the different compound sets and suggests that the models could be used for virtual screening of target-specific compound libraries. The curation-modeling process was successfully applied to a SARS-CoV-2 phenotypic screen and could be used for predictive bioactivity estimation and prioritization for clinical trial selection; virtual screening of drug libraries for the repurposing of drug molecules; and analysis and direction of proprietary data sets.
一种将生物活性和化学数据管理与随机森林分析相结合的独特方法,已产生了一系列针对特定靶点且经过交叉验证的预测特征指纹(PFF),这些指纹在涉及由2019冠状病毒病(COVID-19)大流行引起的严重急性呼吸综合征的多个治疗靶点和疾病阶段具有高预测性,这些靶点包括血浆激肽释放酶、人类免疫缺陷病毒(HIV)蛋白酶、非结构蛋白(NSP)5、NSP12、Janus激酶(JAK)家族和AT-1。该方法在确定不同化合物集的匹配靶点方面高度准确,并表明这些模型可用于虚拟筛选针对特定靶点的化合物库。管理-建模过程已成功应用于SARS-CoV-2表型筛选,可用于预测生物活性估计和临床试验选择的优先级排序;虚拟筛选药物库以重新利用药物分子;以及专有数据集的分析和指导。