Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
Department of Neurology, Montefiore Medical Center, Bronx, NY, USA.
J Alzheimers Dis. 2020;73(3):1211-1219. doi: 10.3233/JAD-191038.
Amyloid-β positivity (Aβ+) based on PET imaging is part of the enrollment criteria for many of the clinical trials of Alzheimer's disease (AD), particularly in trials for amyloid-targeted therapy. Predicting Aβ positivity prior to PET imaging can decrease unnecessary patient burden and costs of running these trials.
The aim of this study was to evaluate the performance of a machine learning model in estimating the individual risk of Aβ+ based on gold-standard of PET imaging.
We used data from an amnestic mild cognitive impairment (aMCI) subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to develop and validate the models. The predictors of Aβ status included demographic and ApoE4 status in all models plus a combination of neuropsychological tests (NP), MRI volumetrics, and cerebrospinal fluid (CSF) biomarkers.
The models that included NP and MRI measures separately showed an area under the receiver operating characteristics (AUC) of 0.74 and 0.72, respectively. However, using NP and MRI measures jointly in the model did not improve prediction. The models including CSF biomarkers significantly outperformed other models with AUCs between 0.89 to 0.92.
Predictive models can be effectively used to identify persons with aMCI likely to be amyloid positive on a subsequent PET scan.
基于正电子发射断层扫描(PET)成像的淀粉样蛋白-β 阳性(Aβ+)是许多阿尔茨海默病(AD)临床试验的纳入标准的一部分,特别是在针对淀粉样蛋白的治疗试验中。在进行 PET 成像之前预测 Aβ+的阳性结果可以减少不必要的患者负担和这些试验的运行成本。
本研究的目的是评估机器学习模型在基于 PET 成像的金标准估计个体 Aβ+阳性风险方面的性能。
我们使用来自阿尔茨海默病神经影像学倡议(ADNI)队列遗忘型轻度认知障碍(aMCI)亚组的数据来开发和验证模型。Aβ 状态的预测因素包括所有模型中的人口统计学和 ApoE4 状态,以及神经心理学测试(NP)、MRI 容积和脑脊液(CSF)生物标志物的组合。
单独包含 NP 和 MRI 测量的模型的受试者工作特征(ROC)曲线下面积(AUC)分别为 0.74 和 0.72。然而,在模型中联合使用 NP 和 MRI 测量并不能提高预测能力。包含 CSF 生物标志物的模型明显优于其他 AUC 在 0.89 到 0.92 之间的模型。
预测模型可以有效地用于识别在后续 PET 扫描中可能呈 Aβ+阳性的 aMCI 患者。