Suppr超能文献

用于组织和动物的受激拉曼散射成像进展

Advances in stimulated Raman scattering imaging for tissues and animals.

作者信息

Shi Lingyan, Fung Anthony A, Zhou Andy

机构信息

Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.

出版信息

Quant Imaging Med Surg. 2021 Mar;11(3):1078-1101. doi: 10.21037/qims-20-712.

Abstract

Stimulated Raman scattering (SRS) microscopy has emerged in the last decade as a powerful optical imaging technology with high chemical selectivity, speed, and subcellular resolution. Since the invention of SRS microscopy, it has been extensively employed in life science to study composition, structure, metabolism, development, and disease in biological systems. Applications of SRS in research and the clinic have generated new insights in many fields including neurobiology, tumor biology, developmental biology, metabolomics, pharmacokinetics, and more. Herein we review the advances and applications of SRS microscopy imaging in tissues and animals, as well as envision future applications and development of SRS imaging in life science and medicine.

摘要

受激拉曼散射(SRS)显微镜在过去十年中已成为一种强大的光学成像技术,具有高化学选择性、速度和亚细胞分辨率。自SRS显微镜发明以来,它已广泛应用于生命科学领域,用于研究生物系统中的组成、结构、代谢、发育和疾病。SRS在研究和临床中的应用在许多领域产生了新的见解,包括神经生物学、肿瘤生物学、发育生物学、代谢组学、药代动力学等等。在此,我们综述了SRS显微镜成像在组织和动物中的进展及应用,并展望了SRS成像在生命科学和医学中的未来应用与发展。

相似文献

1
Advances in stimulated Raman scattering imaging for tissues and animals.
Quant Imaging Med Surg. 2021 Mar;11(3):1078-1101. doi: 10.21037/qims-20-712.
2
Principle of Stimulated Raman Scattering Microscopy: Emerging at High Spatiotemporal Limits.
J Phys Chem C Nanomater Interfaces. 2025 Mar 27;129(12):5789-5797. doi: 10.1021/acs.jpcc.5c00655. Epub 2025 Mar 13.
3
Multimodal Optical Imaging Platform for Studying Cellular Metabolism.
J Vis Exp. 2025 Jun 6(220). doi: 10.3791/67906.
4
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
5
Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases.
Cochrane Database Syst Rev. 2017 Sep 25;9(9):CD006121. doi: 10.1002/14651858.CD006121.pub4.
6
Chemical imaging for biological systems: techniques, AI-driven processing, and applications.
J Mater Chem B. 2025 Jun 18;13(24):6916-6948. doi: 10.1039/d4tb02876g.
7
Near-Infrared-II Fluorescent Probes for Analytical Applications: From Detection to Imaging Monitoring.
Acc Chem Res. 2025 Feb 18;58(4):543-554. doi: 10.1021/acs.accounts.4c00671. Epub 2025 Feb 5.

引用本文的文献

1
Unlocking in vivo metabolic insights with vibrational microscopy.
Nat Methods. 2025 May;22(5):886-889. doi: 10.1038/s41592-025-02616-3.
2
Cancer Cell Line Classification Using Raman Spectroscopy of Cancer-Derived Exosomes and Machine Learning.
Anal Chem. 2025 Apr 8;97(13):7289-7298. doi: 10.1021/acs.analchem.4c06966. Epub 2025 Mar 27.
3
Use of analytical strategies to understand spatial chemical variation in bacterial surface communities.
J Bacteriol. 2025 Feb 20;207(2):e0040224. doi: 10.1128/jb.00402-24. Epub 2025 Jan 28.
4
Innovative Imaging Techniques for Advancing Cancer Diagnosis and Treatment.
Cancers (Basel). 2024 Jul 22;16(14):2607. doi: 10.3390/cancers16142607.
5
Innovative Approaches for Drug Discovery: Quantifying Drug Distribution and Response with Raman Imaging.
Anal Chem. 2024 May 21;96(20):7926-7944. doi: 10.1021/acs.analchem.4c01413. Epub 2024 Apr 16.
6
Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window.
RSC Chem Biol. 2024 Feb 12;5(4):273-292. doi: 10.1039/d3cb00217a. eCollection 2024 Apr 3.
7
Multi-molecular hyperspectral PRM-SRS microscopy.
Nat Commun. 2024 Feb 21;15(1):1599. doi: 10.1038/s41467-024-45576-6.
8
Virtual Staining of Nonfixed Tissue Histology.
Mod Pathol. 2024 May;37(5):100444. doi: 10.1016/j.modpat.2024.100444. Epub 2024 Feb 6.
9
Evaluation of compact pulsed lasers for two-photon microscopy using a simple method for measuring two-photon excitation efficiency.
Neurophotonics. 2023 Oct;10(4):044303. doi: 10.1117/1.NPh.10.4.044303. Epub 2023 Nov 14.
10
Practices, Potential, and Perspectives for Detecting Predisease Using Raman Spectroscopy.
Int J Mol Sci. 2023 Jul 29;24(15):12170. doi: 10.3390/ijms241512170.

本文引用的文献

3
Stimulated Raman Excited Fluorescence Spectroscopy and Imaging.
Nat Photonics. 2019 Jun;13(6):412-417. doi: 10.1038/s41566-019-0396-4. Epub 2019 Apr 1.
4
Metabolic Activity Phenotyping of Single Cells with Multiplexed Vibrational Probes.
Anal Chem. 2020 Jul 21;92(14):9603-9612. doi: 10.1021/acs.analchem.0c00790. Epub 2020 Jun 30.
5
Quantitative chemical imaging of breast calcifications in association with neoplastic processes.
Theranostics. 2020 Apr 27;10(13):5865-5878. doi: 10.7150/thno.43325. eCollection 2020.
8
Tissue imaging depth limit of stimulated Raman scattering microscopy.
Biomed Opt Express. 2020 Jan 13;11(2):762-774. doi: 10.1364/BOE.382396. eCollection 2020 Feb 1.
9
Label-free stimulated Raman scattering imaging reveals silicone breast implant material in tissue.
J Biophotonics. 2020 May;13(5):e201960197. doi: 10.1002/jbio.201960197. Epub 2020 Feb 23.
10
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.
Nat Med. 2020 Jan;26(1):52-58. doi: 10.1038/s41591-019-0715-9. Epub 2020 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验