Suppr超能文献

胶质母细胞瘤和原发性中枢神经系统淋巴瘤:基于 MRI 一阶纹理分析的鉴别——一项机器学习研究。

Glioblastoma and primary central nervous system lymphoma: differentiation using MRI derived first-order texture analysis - a machine learning study.

机构信息

Department of Radiology, University of Iowa Hospitals and Clinics, USA.

Department of Biostatistics, University of Iowa, USA.

出版信息

Neuroradiol J. 2021 Aug;34(4):320-328. doi: 10.1177/1971400921998979. Epub 2021 Mar 3.

Abstract

OBJECTIVES

To evaluate the diagnostic performance of multiple machine learning classifier models derived from first-order histogram texture parameters extracted from T1-weighted contrast-enhanced images in differentiating glioblastoma and primary central nervous system lymphoma.

METHODS

Retrospective study with 97 glioblastoma and 46 primary central nervous system lymphoma patients. Thirty-six different combinations of classifier models and feature selection techniques were evaluated. Five-fold nested cross-validation was performed. Model performance was assessed for whole tumour and largest single slice using receiver operating characteristic curve.

RESULTS

The cross-validated model performance was relatively similar for the top performing models for both whole tumour and largest single slice (area under the curve 0.909-0.924). However, there was a considerable difference between the worst performing model (logistic regression with full feature set, area under the curve 0.737) and the highest performing model for whole tumour (least absolute shrinkage and selection operator model with correlation filter, area under the curve 0.924). For single slice, the multilayer perceptron model with correlation filter had the highest performance (area under the curve 0.914). No significant difference was seen between the diagnostic performance of the top performing model for both whole tumour and largest single slice.

CONCLUSIONS

T1 contrast-enhanced derived first-order texture analysis can differentiate between glioblastoma and primary central nervous system lymphoma with good diagnostic performance. The machine learning performance can vary significantly depending on the model and feature selection methods. Largest single slice and whole tumour analysis show comparable diagnostic performance.

摘要

目的

评估从 T1 增强图像的一阶直方图纹理参数中提取的多个机器学习分类器模型在鉴别胶质母细胞瘤和原发性中枢神经系统淋巴瘤中的诊断性能。

方法

这是一项回顾性研究,纳入了 97 例胶质母细胞瘤和 46 例原发性中枢神经系统淋巴瘤患者。评估了 36 种不同的分类器模型和特征选择技术组合。采用五重嵌套交叉验证。使用受试者工作特征曲线评估全肿瘤和最大单层面的模型性能。

结果

对于全肿瘤和最大单层面表现最佳的模型,交叉验证的模型性能相对相似(曲线下面积为 0.909-0.924)。然而,表现最差的模型(逻辑回归与全特征集,曲线下面积为 0.737)和全肿瘤表现最佳的模型(最小绝对收缩和选择算子模型与相关滤波器,曲线下面积为 0.924)之间存在相当大的差异。对于单层面,相关滤波器的多层感知机模型具有最高的性能(曲线下面积为 0.914)。全肿瘤和最大单层面表现最佳的模型的诊断性能之间没有显著差异。

结论

T1 增强衍生的一阶纹理分析可以很好地区分胶质母细胞瘤和原发性中枢神经系统淋巴瘤。机器学习性能可能因模型和特征选择方法而异。最大单层面和全肿瘤分析显示出可比的诊断性能。

相似文献

3
Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
Eur Radiol. 2018 Sep;28(9):3832-3839. doi: 10.1007/s00330-018-5368-4. Epub 2018 Apr 6.
8
Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
Neuroradiology. 2018 Dec;60(12):1297-1305. doi: 10.1007/s00234-018-2091-4. Epub 2018 Sep 19.

引用本文的文献

1
An accessible deep learning tool for voxel-wise classification of brain malignancies from perfusion MRI.
Cell Rep Med. 2024 Mar 19;5(3):101464. doi: 10.1016/j.xcrm.2024.101464. Epub 2024 Mar 11.
2
Radiomics for differentiation of gliomas from primary central nervous system lymphomas: a systematic review and meta-analysis.
Front Oncol. 2024 Feb 14;14:1291861. doi: 10.3389/fonc.2024.1291861. eCollection 2024.
3
Radiomic features define risk and are linked to DNA methylation attributes in primary CNS lymphoma.
Neurooncol Adv. 2023 Oct 18;5(1):vdad136. doi: 10.1093/noajnl/vdad136. eCollection 2023 Jan-Dec.
4
Integrative Prognostic Machine Learning Models in Mantle Cell Lymphoma.
Cancer Res Commun. 2023 Aug 2;3(8):1435-1446. doi: 10.1158/2767-9764.CRC-23-0083. eCollection 2023 Aug.
7
Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective.
Front Oncol. 2022 Aug 2;12:924245. doi: 10.3389/fonc.2022.924245. eCollection 2022.
8
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis.
Cancers (Basel). 2022 May 31;14(11):2731. doi: 10.3390/cancers14112731.
9
Human Activity Recognition Data Analysis: History, Evolutions, and New Trends.
Sensors (Basel). 2022 Apr 29;22(9):3401. doi: 10.3390/s22093401.
10
Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors.
Cancers (Basel). 2022 Feb 7;14(3):836. doi: 10.3390/cancers14030836.

本文引用的文献

1
Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging.
Clin Neurol Neurosurg. 2020 Nov;198:106205. doi: 10.1016/j.clineuro.2020.106205. Epub 2020 Sep 6.
2
Machine and deep learning methods for radiomics.
Med Phys. 2020 Jun;47(5):e185-e202. doi: 10.1002/mp.13678.
7
Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study.
Abdom Radiol (NY). 2019 Oct;44(10):3336-3349. doi: 10.1007/s00261-019-02122-z.
8
Texture Analysis in Cerebral Gliomas: A Review of the Literature.
AJNR Am J Neuroradiol. 2019 Jun;40(6):928-934. doi: 10.3174/ajnr.A6075. Epub 2019 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验