Suppr超能文献

基于滤波的一阶纹理分析的对比后磁共振成像在胶质母细胞瘤中的生存预测:多种机器学习模型的比较。

Survival prediction in glioblastoma on post-contrast magnetic resonance imaging using filtration based first-order texture analysis: Comparison of multiple machine learning models.

机构信息

Department of Radiology, University of Iowa Hospitals and Clinics, USA.

Department of Radiology, UT Southwestern Medical Center, USA.

出版信息

Neuroradiol J. 2021 Aug;34(4):355-362. doi: 10.1177/1971400921990766. Epub 2021 Feb 3.

Abstract

OBJECTIVE

Magnetic resonance texture analysis (MRTA) is a relatively new technique that can be a valuable addition to clinical and imaging parameters in predicting prognosis. In the present study, we investigated the efficacy of MRTA for glioblastoma survival using T1 contrast-enhanced (CE) images for texture analysis.

METHODS

We evaluated the diagnostic performance of multiple machine learning models based on first-order histogram statistical parameters derived from T1-weighted CE images in the survival stratification of glioblastoma multiforme (GBM). Retrospective evaluation of 85 patients with GBM was performed. Thirty-six first-order texture parameters at six spatial scale filters (SSF) were extracted on the T1 CE axial images for the whole tumor using commercially available research software. Several machine learning classification models (in four broad categories: linear, penalized linear, non-linear, and ensemble classifiers) were evaluated to assess the survival prediction performance using optimal features. Principal component analysis was used prior to fitting the linear classifiers in order to reduce the dimensionality of the feature inputs. Fivefold cross-validation was used to partition the data iteratively into training and testing sets. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance.

RESULTS

The neural network model was the highest performing model with the highest observed AUC (0.811) and cross-validated AUC (0.71). The most important variable was the age at diagnosis, with mean and mean of positive pixels (MPP) for SSF = 0 being the second and third most important, followed by skewness for SSF = 0 and SSF = 4.

CONCLUSIONS

First-order texture features, when combined with age at presentation, show good accuracy in predicting GBM survival.

摘要

目的

磁共振纹理分析(MRTA)是一种相对较新的技术,它可以作为临床和影像学参数的有价值补充,用于预测预后。在本研究中,我们通过 T1 对比增强(CE)图像的纹理分析来研究 MRTA 对胶质母细胞瘤(GBM)生存的预测效能。

方法

我们评估了基于 T1 加权 CE 图像的一阶直方图统计参数的多种机器学习模型在胶质母细胞瘤多形性(GBM)生存分层中的诊断性能。对 85 例 GBM 患者进行回顾性评估。使用商业研究软件在 T1CE 轴位图像上对整个肿瘤提取 36 个一阶纹理参数和 6 个空间尺度滤波器(SSF)。使用几种机器学习分类模型(四大类:线性、惩罚线性、非线性和集成分类器),使用最佳特征评估其生存预测性能。在拟合线性分类器之前,使用主成分分析来降低特征输入的维数。使用 5 折交叉验证将数据迭代划分为训练集和测试集。使用接收者操作特征曲线(ROC)下的面积(AUC)来评估诊断性能。

结果

神经网络模型是表现最佳的模型,具有最高的观测 AUC(0.811)和交叉验证 AUC(0.71)。最重要的变量是诊断时的年龄,其次是 SSF=0 时的均值和阳性像素均值(MPP),SSF=0 和 SSF=4 时的偏度。

结论

一阶纹理特征与发病年龄相结合,对预测 GBM 生存具有很好的准确性。

相似文献

引用本文的文献

本文引用的文献

8
Texture Analysis in Cerebral Gliomas: A Review of the Literature.脑胶质瘤的纹理分析:文献综述。
AJNR Am J Neuroradiol. 2019 Jun;40(6):928-934. doi: 10.3174/ajnr.A6075. Epub 2019 May 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验