Department of Radiology, University of Iowa Hospitals and Clinics, USA.
Department of Radiology, UT Southwestern Medical Center, USA.
Neuroradiol J. 2021 Aug;34(4):355-362. doi: 10.1177/1971400921990766. Epub 2021 Feb 3.
Magnetic resonance texture analysis (MRTA) is a relatively new technique that can be a valuable addition to clinical and imaging parameters in predicting prognosis. In the present study, we investigated the efficacy of MRTA for glioblastoma survival using T1 contrast-enhanced (CE) images for texture analysis.
We evaluated the diagnostic performance of multiple machine learning models based on first-order histogram statistical parameters derived from T1-weighted CE images in the survival stratification of glioblastoma multiforme (GBM). Retrospective evaluation of 85 patients with GBM was performed. Thirty-six first-order texture parameters at six spatial scale filters (SSF) were extracted on the T1 CE axial images for the whole tumor using commercially available research software. Several machine learning classification models (in four broad categories: linear, penalized linear, non-linear, and ensemble classifiers) were evaluated to assess the survival prediction performance using optimal features. Principal component analysis was used prior to fitting the linear classifiers in order to reduce the dimensionality of the feature inputs. Fivefold cross-validation was used to partition the data iteratively into training and testing sets. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance.
The neural network model was the highest performing model with the highest observed AUC (0.811) and cross-validated AUC (0.71). The most important variable was the age at diagnosis, with mean and mean of positive pixels (MPP) for SSF = 0 being the second and third most important, followed by skewness for SSF = 0 and SSF = 4.
First-order texture features, when combined with age at presentation, show good accuracy in predicting GBM survival.
磁共振纹理分析(MRTA)是一种相对较新的技术,它可以作为临床和影像学参数的有价值补充,用于预测预后。在本研究中,我们通过 T1 对比增强(CE)图像的纹理分析来研究 MRTA 对胶质母细胞瘤(GBM)生存的预测效能。
我们评估了基于 T1 加权 CE 图像的一阶直方图统计参数的多种机器学习模型在胶质母细胞瘤多形性(GBM)生存分层中的诊断性能。对 85 例 GBM 患者进行回顾性评估。使用商业研究软件在 T1CE 轴位图像上对整个肿瘤提取 36 个一阶纹理参数和 6 个空间尺度滤波器(SSF)。使用几种机器学习分类模型(四大类:线性、惩罚线性、非线性和集成分类器),使用最佳特征评估其生存预测性能。在拟合线性分类器之前,使用主成分分析来降低特征输入的维数。使用 5 折交叉验证将数据迭代划分为训练集和测试集。使用接收者操作特征曲线(ROC)下的面积(AUC)来评估诊断性能。
神经网络模型是表现最佳的模型,具有最高的观测 AUC(0.811)和交叉验证 AUC(0.71)。最重要的变量是诊断时的年龄,其次是 SSF=0 时的均值和阳性像素均值(MPP),SSF=0 和 SSF=4 时的偏度。
一阶纹理特征与发病年龄相结合,对预测 GBM 生存具有很好的准确性。