文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SRSF1 通过调节 Bcl-x 的剪接并与肺癌中的 PIK3C3 相互作用来抑制自噬。

SRSF1 inhibits autophagy through regulating Bcl-x splicing and interacting with PIK3C3 in lung cancer.

机构信息

Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.

Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, China.

出版信息

Signal Transduct Target Ther. 2021 Mar 5;6(1):108. doi: 10.1038/s41392-021-00495-6.


DOI:10.1038/s41392-021-00495-6
PMID:33664238
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7933324/
Abstract

Alternative splicing is a critical process to generate protein diversity. However, whether and how alternative splicing regulates autophagy remains largely elusive. Here we systematically identify the splicing factor SRSF1 as an autophagy suppressor. Specifically, SRSF1 inhibits autophagosome formation by reducing the accumulation of LC3-II and numbers of autophagosomes in different cell lines. Mechanistically, SRSF1 promotes the splicing of the long isoform of Bcl-x that interacts with Beclin1, thereby dissociating the Beclin1-PIK3C3 complex. In addition, SRSF1 also directly interacts with PIK3C3 to disrupt the interaction between Beclin1 and PIK3C3. Consequently, the decrease of SRSF1 stabilizes the Beclin1 and PIK3C3 complex and activates autophagy. Interestingly, SRSF1 can be degraded by starvation- and oxidative stresses-induced autophagy through interacting with LC3-II, whereas reduced SRSF1 further promotes autophagy. This positive feedback is critical to inhibiting Gefitinib-resistant cancer cell progression both in vitro and in vivo. Consistently, the expression level of SRSF1 is inversely correlated to LC3 level in clinical cancer samples. Our study not only provides mechanistic insights of alternative splicing in autophagy regulation but also discovers a new regulatory role of SRSF1 in tumorigenesis, thereby offering a novel avenue for potential cancer therapeutics.

摘要

可变剪接是产生蛋白质多样性的关键过程。然而,可变剪接是否以及如何调节自噬在很大程度上仍不清楚。在这里,我们系统地鉴定剪接因子 SRSF1 为自噬抑制剂。具体而言,SRSF1 通过减少 LC3-II 的积累和不同细胞系中自噬体的数量来抑制自噬体的形成。在机制上,SRSF1 促进与 Beclin1 相互作用的 Bcl-x 长异构体的剪接,从而使 Beclin1-PIK3C3 复合物解离。此外,SRSF1 还直接与 PIK3C3 相互作用,破坏 Beclin1 和 PIK3C3 之间的相互作用。因此,SRSF1 的减少稳定了 Beclin1 和 PIK3C3 复合物并激活自噬。有趣的是,SRSF1 可以通过与 LC3-II 相互作用,被饥饿和氧化应激诱导的自噬降解,而减少的 SRSF1 进一步促进自噬。这种正反馈对于抑制体外和体内 Gefitinib 耐药癌细胞的进展至关重要。一致地,SRSF1 的表达水平与临床癌症样本中的 LC3 水平呈负相关。我们的研究不仅提供了可变剪接在自噬调节中的机制见解,还发现了 SRSF1 在肿瘤发生中的新调节作用,从而为潜在的癌症治疗提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/a6c031e5fd53/41392_2021_495_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/ca4c78d18951/41392_2021_495_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/ed62f465dd40/41392_2021_495_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/f24a35f0c179/41392_2021_495_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/005ea5c1af63/41392_2021_495_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/d9a4ceb93eab/41392_2021_495_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/0cc1a5595edf/41392_2021_495_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/1aaa9b7be58e/41392_2021_495_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/a6c031e5fd53/41392_2021_495_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/ca4c78d18951/41392_2021_495_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/ed62f465dd40/41392_2021_495_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/f24a35f0c179/41392_2021_495_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/005ea5c1af63/41392_2021_495_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/d9a4ceb93eab/41392_2021_495_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/0cc1a5595edf/41392_2021_495_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/1aaa9b7be58e/41392_2021_495_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7933324/a6c031e5fd53/41392_2021_495_Fig8_HTML.jpg

相似文献

[1]
SRSF1 inhibits autophagy through regulating Bcl-x splicing and interacting with PIK3C3 in lung cancer.

Signal Transduct Target Ther. 2021-3-5

[2]
SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance.

EBioMedicine. 2018-11-11

[3]
SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1α in lung cancer cells through alternative splicing mechanism.

Biochim Biophys Acta Mol Cell Res. 2019-9-3

[4]
SRSF1 Prevents DNA Damage and Promotes Tumorigenesis through Regulation of DBF4B Pre-mRNA Splicing.

Cell Rep. 2017-12-19

[5]
Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1.

Cell Death Dis. 2021-6-7

[6]
Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer.

Cancer Discov. 2023-7-7

[7]
Altered VEGF Splicing Isoform Balance in Tumor Endothelium Involves Activation of Splicing Factors Srpk1 and Srsf1 by the Wilms' Tumor Suppressor Wt1.

Cells. 2019-1-11

[8]
Group A modulates RAB1- and PIK3C3 complex-dependent autophagy.

Autophagy. 2019-6-14

[9]
SRSF1-dependent alternative splicing attenuates BIN1 expression in non-small cell lung cancer.

J Cell Biochem. 2020-2

[10]
A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3.

Autophagy. 2020-6

引用本文的文献

[1]
CK1ε/SRSF10 axis regulates the alternative splicing of Bcl-x in lung cancer cells.

J Biol Chem. 2025-7-21

[2]
Identification of SRSF9 through pooled shRNA screening links BNIP3 splicing to autophagy and metabolic reprogramming in breast cancer.

J Biol Chem. 2025-7-16

[3]
Splicing to keep splicing: A feedback system for cellular homeostasis and state transition.

Clin Transl Med. 2025-6

[4]
RNA splicing: Novel star in pulmonary diseases with a treatment perspective.

Acta Pharm Sin B. 2025-5

[5]
MRAS: Master Regulator Analysis of Alternative Splicing.

Adv Sci (Weinh). 2025-6

[6]
RNA-binding proteins and autophagy in lung cancer: mechanistic insights and therapeutic perspectives.

Discov Oncol. 2025-4-24

[7]
Glucocorticoids regulate the expression of Srsf1 through Hdac4/Foxc1 axis to induce apoptosis of osteoblasts.

Commun Biol. 2025-4-4

[8]
Cyperotundone promotes chemosensitivity of breast cancer via SRSF1.

Front Pharmacol. 2025-3-19

[9]
Syntaxin-6 mediated autophagy confers lenvatinib resistance in hepatocellular carcinoma.

Oncogene. 2025-4-3

[10]
Loss of DDX24 inhibits lung cancer progression by stimulating IKBKG splicing-mediated autophagy.

Theranostics. 2025-1-2

本文引用的文献

[1]
A large-scale binding and functional map of human RNA-binding proteins.

Nature. 2020-7-29

[2]
SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance.

EBioMedicine. 2018-11-11

[3]
Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation.

Cell Death Differ. 2018-10-12

[4]
Life, death and autophagy.

Nat Cell Biol. 2018-9-17

[5]
Mechanism of Nonsense-Mediated mRNA Decay Stimulation by Splicing Factor SRSF1.

Cell Rep. 2018-5-15

[6]
CK1α suppresses lung tumour growth by stabilizing PTEN and inducing autophagy.

Nat Cell Biol. 2018-3-28

[7]
SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer.

Gut. 2017-11-7

[8]
Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells.

Cancer Lett. 2017-8-7

[9]
Targeting autophagy in cancer.

Nat Rev Cancer. 2017-9

[10]
mTOR Signaling in Growth, Metabolism, and Disease.

Cell. 2017-3-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索