Suppr超能文献

基于高光谱技术的甲状腺良恶性结节分类。

Classification of Benign-Malignant Thyroid Nodules Based on Hyperspectral Technology.

机构信息

Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2024 May 17;24(10):3197. doi: 10.3390/s24103197.

Abstract

In recent years, the incidence of thyroid cancer has rapidly increased. To address the issue of the inefficient diagnosis of thyroid cancer during surgery, we propose a rapid method for the diagnosis of benign and malignant thyroid nodules based on hyperspectral technology. Firstly, using our self-developed thyroid nodule hyperspectral acquisition system, data for a large number of diverse thyroid nodule samples were obtained, providing a foundation for subsequent diagnosis. Secondly, to better meet clinical practical needs, we address the current situation of medical hyperspectral image classification research being mainly focused on pixel-based region segmentation, by proposing a method for nodule classification as benign or malignant based on thyroid nodule hyperspectral data blocks. Using 3D CNN and VGG16 networks as a basis, we designed a neural network algorithm (V3Dnet) for classification based on three-dimensional hyperspectral data blocks. In the case of a dataset with a block size of 50 × 50 × 196, the classification accuracy for benign and malignant samples reaches 84.63%. We also investigated the impact of data block size on the classification performance and constructed a classification model that includes thyroid nodule sample acquisition, hyperspectral data preprocessing, and an algorithm for thyroid nodule classification as benign and malignant based on hyperspectral data blocks. The proposed model for thyroid nodule classification is expected to be applied in thyroid surgery, thereby improving surgical accuracy and providing strong support for scientific research in related fields.

摘要

近年来,甲状腺癌的发病率迅速上升。针对甲状腺癌手术中诊断效率低下的问题,我们提出了一种基于高光谱技术的甲状腺良恶性结节快速诊断方法。首先,利用自主研发的甲状腺结节高光谱采集系统,获取了大量不同甲状腺结节样本的数据,为后续诊断提供了基础。其次,为了更好地满足临床实际需求,针对目前医学高光谱图像分类研究主要集中在像素级区域分割的现状,提出了一种基于甲状腺结节高光谱数据块的良恶性结节分类方法。以 3D CNN 和 VGG16 网络为基础,设计了一种基于三维高光谱数据块的分类神经网络算法(V3Dnet)。在数据集块大小为 50×50×196 的情况下,良性和恶性样本的分类准确率达到 84.63%。我们还研究了数据块大小对分类性能的影响,构建了一个包括甲状腺结节样本采集、高光谱数据预处理以及基于高光谱数据块的甲状腺结节良恶性分类算法的分类模型。该甲状腺结节分类模型有望应用于甲状腺手术中,提高手术的准确性,并为相关领域的科学研究提供有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7d/11126106/0c8151d76219/sensors-24-03197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验