Suppr超能文献

使用基于 sigmoid 的超参数修改后的深度神经网络对新冠病毒肺炎(Covid-19)进行计算机断层扫描(CT)和胸部 X 光图像分类

Covid-19 classification using sigmoid based hyper-parameter modified DNN for CT scans and chest X-rays.

作者信息

Anilkumar B, Srividya K, Mary Sowjanya A

机构信息

Department of ECE, GMR Institute of Technology, Rajam, India.

Department of CSE, GMR Institute of Technology, Rajam, India.

出版信息

Multimed Tools Appl. 2023;82(8):12513-12536. doi: 10.1007/s11042-022-13783-2. Epub 2022 Sep 20.

Abstract

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Diagnosis of Computed Tomography (CT), and Chest X-rays (CXR) contains the problem of overfitting, earlier diagnosis, and mode collapse. In this work, we predict the classification of the Corona in CT and CXR images. Initially, the images of the dataset are pre-processed using the function of an adaptive Gaussian filter for de-nosing the image. Once the image is pre-processed it goes to Sigmoid Based Hyper-Parameter Modified DNN(SHMDNN). The hyperparameter modification makes use of the optimization algorithm of adaptive grey wolf optimization (AGWO). Finally, classification takes place and classifies the CT and CXR images into 3 categories namely normal, Pneumonia, and COVID-19 images. Better accuracy of 99.9% is reached when compared to different DNN networks.

摘要

冠状病毒病(COVID-19)是一种由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒引起的传染病。计算机断层扫描(CT)和胸部X光(CXR)诊断存在过拟合、早期诊断和模式崩溃的问题。在这项工作中,我们预测CT和CXR图像中新冠病毒的分类。最初,使用自适应高斯滤波器函数对数据集的图像进行预处理,以去除图像噪声。一旦图像经过预处理,它就会进入基于Sigmoid的超参数修改深度神经网络(SHMDNN)。超参数修改利用了自适应灰狼优化(AGWO)算法。最后进行分类,将CT和CXR图像分为正常、肺炎和COVID-19图像三类。与不同的深度神经网络相比,达到了99.9%的更高准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验