Stem Cells Therapies in Neurodegenerative Diseases Lab, Centro de Investigación Principe Felipe (CIPF), 46012 Valencia, Spain.
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
Int J Mol Sci. 2021 Feb 20;22(4):2092. doi: 10.3390/ijms22042092.
Hereditary retinal dystrophies (HRD) represent a significant cause of blindness, affecting mostly retinal pigment epithelium (RPE) and photoreceptors (PRs), and currently suffer from a lack of effective treatments. Highly specialized RPE and PR cells interact mutually in the functional retina, therefore primary HRD affecting one cell type leading to a secondary HRD in the other cells. Phagocytosis is one of the primary functions of the RPE and studies have discovered that mutations in the phagocytosis-associated gene Mer tyrosine kinase receptor () lead to primary RPE dystrophy. Treatment strategies for this rare disease include the replacement of diseased RPE with healthy autologous RPE to prevent PR degeneration. The generation and directed differentiation of patient-derived human-induced pluripotent stem cells (hiPSCs) may provide a means to generate autologous therapeutically-relevant adult cells, including RPE and PR. However, the continued presence of the gene mutation in patient-derived hiPSCs represents a significant drawback. Recently, we reported the generation of a hiPSC model of MERTK-associated Retinitis Pigmentosa (RP) that recapitulates disease phenotype and the subsequent creation of gene-corrected RP-hiPSCs using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9. In this study, we differentiated gene-corrected RP-hiPSCs into RPE and found that these cells had recovered both wild-type MERTK protein expression and the lost phagocytosis of fluorescently-labeled photoreceptor outer segments observed in uncorrected RP-hiPSC-RPE. These findings provide proof-of-principle for the utility of gene-corrected hiPSCs as an unlimited cell source for personalized cell therapy of rare vision disorders.
遗传性视网膜营养不良 (HRD) 是导致失明的一个重要原因,主要影响视网膜色素上皮 (RPE) 和光感受器 (PR),目前缺乏有效的治疗方法。高度特化的 RPE 和 PR 细胞在功能正常的视网膜中相互作用,因此原发性 HRD 影响一种细胞类型,导致另一种细胞类型的继发性 HRD。吞噬作用是 RPE 的主要功能之一,研究发现吞噬作用相关基因 Mer 酪氨酸激酶受体 () 的突变导致原发性 RPE 营养不良。这种罕见疾病的治疗策略包括用健康的自体 RPE 替代患病的 RPE,以防止 PR 变性。患者来源的人诱导多能干细胞 (hiPSC) 的产生和定向分化可能为生成自体治疗相关的成体细胞(包括 RPE 和 PR)提供一种手段。然而,患者来源的 hiPSC 中持续存在基因突变是一个显著的缺陷。最近,我们报道了一种 MERTK 相关视网膜色素变性 (RP) 的 hiPSC 模型的产生,该模型再现了疾病表型,随后使用 CRISPR/Cas9 对 RP-hiPSCs 进行了基因校正。在这项研究中,我们将基因校正的 RP-hiPSC 分化为 RPE,并发现这些细胞恢复了野生型 MERTK 蛋白表达,并恢复了未经校正的 RP-hiPSC-RPE 中观察到的荧光标记的光感受器外节的吞噬作用。这些发现为基因校正的 hiPSC 作为治疗罕见视力障碍的个体化细胞治疗的无限细胞来源的实用性提供了初步证据。