Centro de Investigaciòn de Polimeros Avanzados (CIPA), Avendia Collao 1202, Edificio de Laboratorios de CIPA, Concepciòn, Chile.
Kirnd Institute of Research and Development, PVT LTD, Tiruchirappalli, Tamil Nadu, 620 020, India.
Carbohydr Polym. 2021 May 1;259:117762. doi: 10.1016/j.carbpol.2021.117762. Epub 2021 Feb 10.
Biopolymer-based nanomaterials have been developed as antimicrobial and anticancer agents due to their advanced physical, chemical and biomedical characteristics. Herein, chitosan-copper oxide nanomaterial was, successfully synthesized by a green method. In this process, copper salt was nucleated with Psidium guajava leaves extract in order to form the nanomaterial in the chitosan network. Attenuated total reflection-fourier transform, infrared spectroscopy, X-ray diffraction, Dynamic light scattering, Transmission electron microscope, Field emission scanning electron microscopy/Energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques were, employed to characterize the synthesized nanomaterial. The average size of the nanomaterial was identified to be ∼52.49 nm with XRD. The antibacterial study of CCuO NM showed higher activity than the commercial amoxicillin against gram-positive (G + ve) (Staphylococcus aureus, Bacillus subtilis) and gram-negative (G-ve) bacteria (Klebsiella pneumonia, Escherichia coli). CCuO NM showed in-vitro anticancer potential against human cervical cancer cells (Hela) with an IC concentration of 34.69 μg/mL. Photoluminescence spectrum of CCuO NM showed a green emission (oxygen vacancies) observed at ∼516 nm, which is attributed to the generation of reactive oxygen species (ROS) by the nanomaterial, which is believed, to be responsible for the biocidal (cell death) effects. These results suggested that CCuO is a promising nanomaterial that could be suitable for advanced applications in the healthcare industries.
基于生物聚合物的纳米材料因其具有先进的物理、化学和生物医学特性,已被开发为抗菌和抗癌药物。在此,通过绿色方法成功合成了壳聚糖-氧化铜纳米材料。在这个过程中,铜盐在番石榴叶提取物的作用下形成纳米颗粒,然后在壳聚糖网络中形成纳米材料。采用衰减全反射-傅里叶变换红外光谱、X 射线衍射、动态光散射、透射电子显微镜、场发射扫描电子显微镜/能谱分析、X 射线光电子能谱和光致发光光谱技术对合成的纳米材料进行了表征。通过 XRD 确定纳米材料的平均尺寸约为 52.49nm。CCuO NM 的抗菌研究表明,其对革兰氏阳性(G+)(金黄色葡萄球菌、枯草芽孢杆菌)和革兰氏阴性(G-)(肺炎克雷伯菌、大肠杆菌)细菌的活性均高于商业阿莫西林。CCuO NM 在体外对人宫颈癌(Hela)细胞具有抗癌潜力,IC浓度为 34.69μg/mL。CCuO NM 的光致发光光谱显示,在 ∼516nm 处观察到绿色发射(氧空位),这归因于纳米材料产生的活性氧物质(ROS),据信这是纳米材料具有杀菌(细胞死亡)作用的原因。这些结果表明,CCuO 是一种很有前途的纳米材料,可适用于医疗保健行业的先进应用。