School of Life Sciences, Sussex Neuroscience, University of Sussex, Falmer, Brighton, UK.
School of Life Sciences, Sussex Neuroscience, University of Sussex, Falmer, Brighton, UK.
Curr Biol. 2021 Mar 8;31(5):R235-R236. doi: 10.1016/j.cub.2021.01.030.
The encoding of light increments and decrements by separate On- and Off- systems is a fundamental ingredient of vision, which supports edge detection and makes efficient use of the limited dynamic range of visual neurons. Theory predicts that the neural representation of On- and Off-signals should be balanced, including across an animal's visible spectrum. Here we find that larval zebrafish violate this textbook expectation: in the zebrafish brain, UV-stimulation near exclusively gives On-responses, blue/green stimulation mostly Off-responses, and red-light alone elicits approximately balanced On- and Off-responses (see also references). We link these findings to zebrafish visual ecology, and suggest that the observed spectral tuning boosts the encoding of object 'colourfulness', which correlates with object proximity in their underwater world.
光的增亮和减暗通过独立的 ON 和 OFF 系统进行编码,是视觉的基本要素,它支持边缘检测,并有效地利用了视觉神经元有限的动态范围。理论预测,ON 和 OFF 信号的神经表示应该是平衡的,包括在动物的可见光谱范围内。在这里,我们发现幼虫斑马鱼违反了这一教科书式的预期:在斑马鱼的大脑中,近紫外线刺激几乎只产生 ON 反应,蓝/绿光刺激主要产生 OFF 反应,而单独的红光则引发大致平衡的 ON 和 OFF 反应(也可参见参考文献)。我们将这些发现与斑马鱼的视觉生态学联系起来,并提出观察到的光谱调谐增强了对物体“色彩丰富度”的编码,这与它们水下世界中物体的接近程度相关。