Suppr超能文献

用于优化团队组成的深度神经网络。

Deep Neural Networks for Optimal Team Composition.

作者信息

Sapienza Anna, Goyal Palash, Ferrara Emilio

机构信息

USC Information Sciences Institute, Los Angeles, CA, United States.

出版信息

Front Big Data. 2019 Jun 13;2:14. doi: 10.3389/fdata.2019.00014. eCollection 2019.

Abstract

Cooperation is a fundamental social mechanism, whose effects on human performance have been investigated in several environments. Online games are modern-days natural settings in which cooperation strongly affects human behavior. Every day, millions of players connect and play together in team-based games: the patterns of cooperation can either foster or hinder individual skill learning and performance. This work has three goals: (i) identifying teammates' influence on players' performance in the short and long term, (ii) designing a computational framework to recommend teammates to improve players' performance, and (iii) setting to demonstrate that such improvements can be predicted via deep learning. We leverage a large dataset from Dota 2, a popular Multiplayer Online Battle Arena game. We generate a directed co-play network, whose links' weights depict the effect of teammates on players' performance. Specifically, we propose a measure of network influence that captures skill transfer from player to player over time. We then use such framing to design a recommendation system to suggest new teammates based on a modified deep neural autoencoder and we demonstrate its state-of-the-art recommendation performance. We finally provide insights into skill transfer effects: our experimental results demonstrate that such dynamics can be predicted using deep neural networks.

摘要

合作是一种基本的社会机制,其对人类表现的影响已在多种环境中得到研究。网络游戏是现代的自然场景,其中合作对人类行为有强烈影响。每天,数以百万计的玩家在团队游戏中相互连接并一起游戏:合作模式既可以促进也可以阻碍个人技能学习和表现。这项工作有三个目标:(i)确定队友在短期和长期对玩家表现的影响,(ii)设计一个计算框架来推荐队友以提高玩家表现,以及(iii)着手证明这种提升可以通过深度学习来预测。我们利用来自热门多人在线战斗竞技游戏《刀塔2》的一个大型数据集。我们生成一个有向共同游戏网络,其链接权重描绘了队友对玩家表现的影响。具体而言,我们提出一种网络影响力度量,它能捕捉随着时间推移玩家之间的技能转移。然后,我们使用这种框架设计一个推荐系统,基于一个改进的深度神经自动编码器来推荐新队友,并展示其领先的推荐性能。我们最终深入探讨技能转移效应:我们的实验结果表明,这种动态可以使用深度神经网络来预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0912/7931874/258f539a6a2e/fdata-02-00014-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验