Suppr超能文献

利用机器学习预测中心性浆液性脉络膜视网膜病变患者的视网膜下液吸收情况。

Predicting subretinal fluid absorption with machine learning in patients with central serous chorioretinopathy.

作者信息

Xu Fabao, Xiang Yifan, Wan Cheng, You Qijing, Zhou Lijun, Li Cong, Gong Songjian, Gong Yajun, Li Longhui, Li Zhongwen, Zhang Li, Zhang Xiayin, Guo Chong, Lai Kunbei, Huang Chuangxin, Zhao Hongkun, Jin Chenjin, Lin Haotian

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.

Nanjing University of Aeronautics and Astronautics, Nanjing, China.

出版信息

Ann Transl Med. 2021 Feb;9(3):242. doi: 10.21037/atm-20-1519.

Abstract

BACKGROUND

Machine learning was used to predict subretinal fluid absorption (SFA) at 1, 3 and 6 months after laser treatment in patients with central serous chorioretinopathy (CSC).

METHODS

The clinical and imaging data from 480 eyes of 461 patients with CSC were collected at Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center (XEC). The data included clinical features from electronic medical records and measured features from fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), optical coherence tomography angiography (OCTA), and optical coherence tomography (OCT). A ZOC dataset was used for training and internal validation. An XEC dataset was used for external validation. Six machine learning algorithms and a blending algorithm were trained to predict SFA in patients with CSC after laser treatment. The SFA results predicted by machine learning were compared with the actual patient prognoses. Based on the initial detailed investigation, we constructed a simplified model using fewer clinical features and OCT features for convenient application.

RESULTS

During the internal validation, random forest performed best in SFA prediction, with accuracies of 0.651±0.068, 0.753±0.065 and 0.818±0.058 at 1, 3 and 6 months, respectively. In the external validation, XGBoost performed best at SFA prediction with accuracies of 0.734, 0.727, and 0.900 at 1, 3 and 6 months, respectively. The simplified model showed a comparable level of predictive power.

CONCLUSIONS

Machine learning can achieve high accuracy in long-term SFA predictions and identify the features relevant to CSC patients' prognoses. Our study provides an individualized reference for ophthalmologists to treat and create a follow-up schedule for CSC patients.

摘要

背景

利用机器学习预测中心性浆液性脉络膜视网膜病变(CSC)患者激光治疗后1、3和6个月时的视网膜下液吸收(SFA)情况。

方法

收集了中山大学中山眼科中心(ZOC)和厦门眼科中心(XEC)461例CSC患者480只眼的临床和影像数据。数据包括电子病历中的临床特征以及眼底荧光血管造影(FFA)、吲哚菁绿血管造影(ICGA)、光学相干断层扫描血管造影(OCTA)和光学相干断层扫描(OCT)测量的特征。ZOC数据集用于训练和内部验证。XEC数据集用于外部验证。训练了六种机器学习算法和一种融合算法,以预测CSC患者激光治疗后的SFA。将机器学习预测的SFA结果与患者实际预后进行比较。基于最初的详细研究,我们构建了一个使用较少临床特征和OCT特征的简化模型,以便于应用。

结果

在内部验证中,随机森林在SFA预测方面表现最佳,在1、3和6个月时的准确率分别为0.651±0.068、0.753±0.065和0.818±0.058。在外部验证中,XGBoost在SFA预测方面表现最佳,在1、3和6个月时的准确率分别为0.734、0.727和0.900。简化模型显示出相当的预测能力水平。

结论

机器学习在长期SFA预测中可实现高精度,并识别与CSC患者预后相关的特征。我们的研究为眼科医生治疗CSC患者并制定随访计划提供了个性化参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b62c/7940879/afa160f408d7/atm-09-03-242-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验