Suppr超能文献

机器学习预测糖尿病黄斑水肿抗 VEGF 治疗后的视力

Prediction of Visual Acuity after anti-VEGF Therapy in Diabetic Macular Edema by Machine Learning.

机构信息

Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.

出版信息

J Diabetes Res. 2022 Apr 19;2022:5779210. doi: 10.1155/2022/5779210. eCollection 2022.

Abstract

PURPOSE

To predict visual acuity (VA) 1 month after anti-vascular endothelial growth factor (VEGF) therapy in patients with diabetic macular edema (DME) by using machine learning.

METHODS

This retrospective study included 281 eyes with DME receiving intravitreal anti-VEGF treatment from January 1, 2019, to April 1, 2021. Eighteen features from electronic medical records and measurements data from OCT images were extracted. The data obtained from January 1, 2019, to November 1, 2020, were used as the training set; the data obtained from November 1, 2020, to April 1, 2021, were used as the validation set. Six different machine learning algorithms were used to predict VA in patients after anti-VEGF therapy. After the initial detailed investigation, we designed an optimization model for convenient application. The VA predicted by machine learning was compared with the ground truth.

RESULTS

The ensemble algorithm (linear regression + random forest regressor) performed best in VA and VA variance predictions. In the validation set, the mean absolute errors (MAEs) of VA predictions were 0.137-0.153 logMAR (within 7-8 letters), and the mean square errors (MSEs) were 0.033-0.045 logMAR (within 2-3 letters) for the 1-month VA predictions, respectively. For the prediction of VA variance at 1 month, the MAEs were 0.164-0.169 logMAR (within 9 letters), and the MSEs were 0.056-0.059 logMAR (within 3 letters), respectively.

CONCLUSIONS

Our machine learning models could accurately predict VA and VA variance in DME patients receiving anti-VEGF therapy 1 month after, which would be much valuable to guide precise individualized interventions and manage expectations in clinical practice.

摘要

目的

通过机器学习预测接受抗血管内皮生长因子(VEGF)治疗后 1 个月的糖尿病性黄斑水肿(DME)患者的视力(VA)。

方法

本回顾性研究纳入了 2019 年 1 月 1 日至 2021 年 4 月 1 日期间接受玻璃体内抗 VEGF 治疗的 281 只 DME 眼。从电子病历中提取 18 个特征和 OCT 图像的测量数据。2019 年 1 月 1 日至 2020 年 11 月 1 日的数据作为训练集;2020 年 11 月 1 日至 2021 年 4 月 1 日的数据作为验证集。使用六种不同的机器学习算法预测抗 VEGF 治疗后患者的 VA。经过初步详细调查,我们为方便应用设计了优化模型。比较了机器学习预测的 VA 与真实值。

结果

集成算法(线性回归+随机森林回归器)在 VA 和 VA 方差预测方面表现最佳。在验证集中,1 个月 VA 预测的平均绝对误差(MAE)分别为 0.137-0.153 logMAR(7-8 个字母),平均平方误差(MSE)分别为 0.033-0.045 logMAR(2-3 个字母)。对于 1 个月 VA 方差的预测,MAE 分别为 0.164-0.169 logMAR(9 个字母),MSE 分别为 0.056-0.059 logMAR(3 个字母)。

结论

我们的机器学习模型可以准确预测接受抗 VEGF 治疗后 1 个月的 DME 患者的 VA 和 VA 方差,这对于指导临床实践中的精确个体化干预和管理预期将非常有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/476c/9042629/7512ed3b1310/JDR2022-5779210.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验