Suppr超能文献

肠道上皮自噬和屏障功能中的RNA结合蛋白与长链非编码RNA

RNA-binding proteins and long noncoding RNAs in intestinal epithelial autophagy and barrier function.

作者信息

Xiao Lan, Rao Jaladanki N, Wang Jian-Ying

机构信息

Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.

Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.

出版信息

Tissue Barriers. 2021 Apr 3;9(2):1895648. doi: 10.1080/21688370.2021.1895648. Epub 2021 Mar 12.

Abstract

The intestinal autophagy and barrier function are crucial for maintaining the epithelium homeostasis and tightly regulated through well-controlled mechanisms. RNA-binding proteins (RBPs) and long noncoding RNAs (lncRNAs) modulate gene expression at the posttranscription level and are intimately involved in different physiological processes and diverse human diseases. In this review, we first highlight the roles of several RBPs and lncRNAs in the regulation of intestinal epithelial autophagy and barrier function, particularly focusing on the emerging evidence of RBPs and lncRNAs in the control of mRNA stability and translation. We additionally discuss recent findings that the interactions between RBPs and lncRNAs alter the fate of their target transcripts and thus influence gut epithelium host defense in response to stressful environments. These exciting advances in understanding the posttranscriptional control of the epithelial autophagy and barrier function by RBPs and lncRNAs provide a strong rationale for developing new effective therapeutics based on targeting RBPs and/or lncRNAs to preserve the intestinal epithelial integrity in patients with critical illnesses.

摘要

肠道自噬和屏障功能对于维持上皮细胞稳态至关重要,并通过严格控制的机制进行紧密调节。RNA结合蛋白(RBPs)和长链非编码RNA(lncRNAs)在转录后水平调节基因表达,并密切参与不同的生理过程和多种人类疾病。在本综述中,我们首先强调了几种RBPs和lncRNAs在调节肠道上皮自噬和屏障功能中的作用,特别关注RBPs和lncRNAs在控制mRNA稳定性和翻译方面的新证据。我们还讨论了最近的发现,即RBPs和lncRNAs之间的相互作用改变了其靶转录本的命运,从而影响肠道上皮对压力环境的宿主防御。这些在理解RBPs和lncRNAs对上皮自噬和屏障功能的转录后控制方面的令人兴奋的进展,为开发基于靶向RBPs和/或lncRNAs的新的有效疗法提供了强有力的理论依据,以在危重病患者中维持肠道上皮的完整性。

相似文献

1
RNA-binding proteins and long noncoding RNAs in intestinal epithelial autophagy and barrier function.
Tissue Barriers. 2021 Apr 3;9(2):1895648. doi: 10.1080/21688370.2021.1895648. Epub 2021 Mar 12.
2
Long noncoding RNAs in intestinal epithelium homeostasis.
Am J Physiol Cell Physiol. 2019 Jul 1;317(1):C93-C100. doi: 10.1152/ajpcell.00092.2019. Epub 2019 May 1.
4
Regulation of Paneth Cell Function by RNA-Binding Proteins and Noncoding RNAs.
Cells. 2021 Aug 17;10(8):2107. doi: 10.3390/cells10082107.
5
HuR and Its Interactions with Noncoding RNAs in Gut Epithelium Homeostasis and Diseases.
Front Biosci (Landmark Ed). 2023 Oct 25;28(10):262. doi: 10.31083/j.fbl2810262.
6
Interactions between long non‑coding RNAs and RNA‑binding proteins in cancer (Review).
Oncol Rep. 2021 Dec;46(6). doi: 10.3892/or.2021.8207. Epub 2021 Oct 22.
7
Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases.
Oxid Med Cell Longev. 2017;2017:2062384. doi: 10.1155/2017/2062384. Epub 2017 Jul 25.
8
LncRNAs and their RBPs: How to influence the fate of stem cells?
Stem Cell Res Ther. 2022 May 3;13(1):175. doi: 10.1186/s13287-022-02851-x.
9
Roles of Long Noncoding RNAs and Circular RNAs in Translation.
Cold Spring Harb Perspect Biol. 2019 Jun 3;11(6):a032680. doi: 10.1101/cshperspect.a032680.
10
Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders.
J Invest Surg. 2024 Dec;37(1):2308809. doi: 10.1080/08941939.2024.2308809. Epub 2024 Feb 7.

引用本文的文献

1
Human colonic EVs induce murine enteric neuroplasticity via the lncRNA GAS5/miR-23/NMDA NR2B axis.
JCI Insight. 2025 Mar 10;10(5):e178631. doi: 10.1172/jci.insight.178631.
2
Noncoding Vault RNA1-1 Impairs Intestinal Epithelial Renewal and Barrier Function by Interacting With CUG-binding Protein 1.
Cell Mol Gastroenterol Hepatol. 2025;19(1):101410. doi: 10.1016/j.jcmgh.2024.101410. Epub 2024 Sep 28.
4
The role of long non-coding RNA in Crohn's disease.
Heliyon. 2024 Jun 6;10(11):e32606. doi: 10.1016/j.heliyon.2024.e32606. eCollection 2024 Jun 15.
5
Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders.
J Invest Surg. 2024 Dec;37(1):2308809. doi: 10.1080/08941939.2024.2308809. Epub 2024 Feb 7.
6
The significance of long non-coding RNAs in the pathogenesis, diagnosis and treatment of inflammatory bowel disease.
Precis Clin Med. 2023 Dec 11;6(4):pbad031. doi: 10.1093/pcmedi/pbad031. eCollection 2023 Dec.
7
Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure.
Front Neurosci. 2023 Jun 15;17:1182635. doi: 10.3389/fnins.2023.1182635. eCollection 2023.
8
Small noncoding vault RNA2-1 disrupts gut epithelial barrier function via interaction with HuR.
EMBO Rep. 2023 Feb 6;24(2):e54925. doi: 10.15252/embr.202254925. Epub 2022 Nov 28.
10
miR-195 regulates intestinal epithelial restitution after wounding by altering actin-related protein-2 translation.
Am J Physiol Cell Physiol. 2022 Apr 1;322(4):C712-C722. doi: 10.1152/ajpcell.00001.2022. Epub 2022 Mar 2.

本文引用的文献

1
RNA-binding proteins in human genetic disease.
Nat Rev Genet. 2021 Mar;22(3):185-198. doi: 10.1038/s41576-020-00302-y. Epub 2020 Nov 24.
2
Paneth Cell Alertness to Pathogens Maintained by Vitamin D Receptors.
Gastroenterology. 2021 Mar;160(4):1269-1283. doi: 10.1053/j.gastro.2020.11.015. Epub 2020 Nov 18.
3
A Novel Role of SLC26A3 in the Maintenance of Intestinal Epithelial Barrier Integrity.
Gastroenterology. 2021 Mar;160(4):1240-1255.e3. doi: 10.1053/j.gastro.2020.11.008. Epub 2020 Nov 13.
4
Cell fate specification and differentiation in the adult mammalian intestine.
Nat Rev Mol Cell Biol. 2021 Jan;22(1):39-53. doi: 10.1038/s41580-020-0278-0. Epub 2020 Sep 21.
6
Polyamines in Gut Epithelial Renewal and Barrier Function.
Physiology (Bethesda). 2020 Sep 1;35(5):328-337. doi: 10.1152/physiol.00011.2020.
7
RNA-binding protein HuR regulates translation of vitamin D receptor modulating rapid epithelial restitution after wounding.
Am J Physiol Cell Physiol. 2020 Jul 1;319(1):C208-C217. doi: 10.1152/ajpcell.00009.2020. Epub 2020 May 20.
8
The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression.
J Biol Chem. 2020 Jun 19;295(25):8602-8612. doi: 10.1074/jbc.AC120.013646. Epub 2020 May 8.
9
Understanding and targeting the disease-related RNA binding protein human antigen R (HuR).
Wiley Interdiscip Rev RNA. 2020 May;11(3):e1581. doi: 10.1002/wrna.1581. Epub 2020 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验