Suppr超能文献

DDIWAS:基于高通量电子健康记录的药物-药物相互作用筛查。

DDIWAS: High-throughput electronic health record-based screening of drug-drug interactions.

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

出版信息

J Am Med Inform Assoc. 2021 Jul 14;28(7):1421-1430. doi: 10.1093/jamia/ocab019.

Abstract

OBJECTIVE

We developed and evaluated Drug-Drug Interaction Wide Association Study (DDIWAS). This novel method detects potential drug-drug interactions (DDIs) by leveraging data from the electronic health record (EHR) allergy list.

MATERIALS AND METHODS

To identify potential DDIs, DDIWAS scans for drug pairs that are frequently documented together on the allergy list. Using deidentified medical records, we tested 616 drugs for potential DDIs with simvastatin (a common lipid-lowering drug) and amlodipine (a common blood-pressure lowering drug). We evaluated the performance to rediscover known DDIs using existing knowledge bases and domain expert review. To validate potential novel DDIs, we manually reviewed patient charts and searched the literature.

RESULTS

DDIWAS replicated 34 known DDIs. The positive predictive value to detect known DDIs was 0.85 and 0.86 for simvastatin and amlodipine, respectively. DDIWAS also discovered potential novel interactions between simvastatin-hydrochlorothiazide, amlodipine-omeprazole, and amlodipine-valacyclovir. A software package to conduct DDIWAS is publicly available.

CONCLUSIONS

In this proof-of-concept study, we demonstrate the value of incorporating information mined from existing allergy lists to detect DDIs in a real-world clinical setting. Since allergy lists are routinely collected in EHRs, DDIWAS has the potential to detect and validate DDI signals across institutions.

摘要

目的

我们开发并评估了药物-药物相互作用广泛关联研究(DDIWAS)。这种新方法通过利用电子健康记录(EHR)过敏清单中的数据来检测潜在的药物-药物相互作用(DDI)。

材料和方法

为了识别潜在的 DDI,DDIWAS 扫描在过敏清单上经常一起记录的药物对。使用去识别的医疗记录,我们用辛伐他汀(一种常见的降脂药物)和氨氯地平(一种常见的降压药物)测试了 616 种药物的潜在 DDI。我们评估了使用现有知识库和领域专家审查重新发现已知 DDI 的性能。为了验证潜在的新 DDI,我们手动审查了患者图表并搜索了文献。

结果

DDIWAS 复制了 34 种已知的 DDI。检测已知 DDI 的阳性预测值分别为辛伐他汀和氨氯地平的 0.85 和 0.86。DDIWAS 还发现了辛伐他汀-氢氯噻嗪、氨氯地平-奥美拉唑和氨氯地平-伐昔洛韦之间的潜在新相互作用。用于进行 DDIWAS 的软件包可公开获得。

结论

在这项概念验证研究中,我们证明了从现有过敏清单中挖掘信息以在真实临床环境中检测 DDI 的价值。由于过敏清单通常在 EHR 中收集,因此 DDIWAS 有可能在各个机构之间检测和验证 DDI 信号。

相似文献

2
Mining clinical text for signals of adverse drug-drug interactions.从临床文本中挖掘药物-药物不良相互作用信号。
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):353-62. doi: 10.1136/amiajnl-2013-001612. Epub 2013 Oct 24.

引用本文的文献

7
Harnessing Electronic Medical Records in Cardiovascular Clinical Practice and Research.利用电子病历进行心血管临床实践和研究。
J Cardiovasc Transl Res. 2023 Jun;16(3):546-556. doi: 10.1007/s12265-022-10313-1. Epub 2022 Sep 14.

本文引用的文献

7
The challenge of de-labeling penicillin allergy.消除青霉素过敏标签的挑战。
Allergy. 2020 Feb;75(2):273-288. doi: 10.1111/all.13848. Epub 2019 May 26.
10
Representing Knowledge Consistently Across Health Systems.在各个卫生系统中实现知识的一致呈现。
Yearb Med Inform. 2017 Aug;26(1):139-147. doi: 10.15265/IY-2017-018. Epub 2017 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验