Suppr超能文献

非线性交叉验证预测指标的小样本估计改进

Improved small-sample estimation of nonlinear cross-validated prediction metrics.

作者信息

Benkeser David, Petersen Maya, van der Laan Mark J

机构信息

Department of Biostatistics and Bioinformatics, Emory University.

Graduate Group in Biostatistics, University of California, Berkeley.

出版信息

J Am Stat Assoc. 2020;115(532):1917-1932. doi: 10.1080/01621459.2019.1668794. Epub 2019 Oct 21.

Abstract

When predicting an outcome is the scientific goal, one must decide on a metric by which to evaluate the quality of predictions. We consider the problem of measuring the performance of a prediction algorithm with the same data that were used to train the algorithm. Typical approaches involve bootstrapping or cross-validation. However, we demonstrate that bootstrap-based approaches often fail and standard cross-validation estimators may perform poorly. We provide a general study of cross-validation-based estimators that highlights the source of this poor performance, and propose an alternative framework for estimation using techniques from the efficiency theory literature. We provide a theorem establishing the weak convergence of our estimators. The general theorem is applied in detail to two specific examples and we discuss possible extensions to other parameters of interest. For the two explicit examples that we consider, our estimators demonstrate remarkable finite-sample improvements over standard approaches.

摘要

当预测结果是科学目标时,必须确定一个用于评估预测质量的指标。我们考虑使用用于训练算法的相同数据来衡量预测算法性能的问题。典型方法包括自助法或交叉验证。然而,我们证明基于自助法的方法常常失败,并且标准交叉验证估计量可能表现不佳。我们对基于交叉验证的估计量进行了全面研究,突出了这种不佳表现的根源,并使用效率理论文献中的技术提出了一种替代估计框架。我们给出了一个定理,确立了我们估计量的弱收敛性。该一般定理被详细应用于两个具体例子,并且我们讨论了对其他感兴趣参数的可能扩展。对于我们考虑的两个明确例子,我们的估计量相对于标准方法在有限样本上有显著改进。

相似文献

1
Improved small-sample estimation of nonlinear cross-validated prediction metrics.非线性交叉验证预测指标的小样本估计改进
J Am Stat Assoc. 2020;115(532):1917-1932. doi: 10.1080/01621459.2019.1668794. Epub 2019 Oct 21.
2
Cross-Validated Bagged Learning.交叉验证袋装学习
J Multivar Anal. 2008 Mar;25(2):260-266. doi: 10.1016/j.jmva.2007.07.004.

引用本文的文献

2
Cross-validation: what does it estimate and how well does it do it?交叉验证:它估计的是什么,效果如何?
J Am Stat Assoc. 2024;119(546):1434-1445. doi: 10.1080/01621459.2023.2197686. Epub 2023 May 15.
4
A Guide to Cross-Validation for Artificial Intelligence in Medical Imaging.医学成像中人工智能的交叉验证指南
Radiol Artif Intell. 2023 May 24;5(4):e220232. doi: 10.1148/ryai.220232. eCollection 2023 Jul.
5
A two-stage super learner for healthcare expenditures.一种用于医疗保健支出的两阶段超级学习器。
Health Serv Outcomes Res Methodol. 2022 Dec;22(4):435-453. doi: 10.1007/s10742-022-00275-x. Epub 2022 Jun 6.

本文引用的文献

3
Online cross-validation-based ensemble learning.基于在线交叉验证的集成学习。
Stat Med. 2018 Jan 30;37(2):249-260. doi: 10.1002/sim.7320. Epub 2017 May 4.
5
Super-Learning of an Optimal Dynamic Treatment Rule.最优动态治疗规则的超学习
Int J Biostat. 2016 May 1;12(1):305-32. doi: 10.1515/ijb-2015-0052.
8
Correcting for optimistic prediction in small data sets.在小数据集上纠正乐观预测。
Am J Epidemiol. 2014 Aug 1;180(3):318-24. doi: 10.1093/aje/kwu140. Epub 2014 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验