Suppr超能文献

基于机器学习和影像组学对浸润性肺腺癌微乳头/实性生长模式的预测

A machine learning-based prediction of the micropapillary/solid growth pattern in invasive lung adenocarcinoma with radiomics.

作者信息

He Bingxi, Song Yongxiang, Wang Lili, Wang Tingting, She Yunlang, Hou Likun, Zhang Lei, Wu Chunyan, Babu Benson A, Bagci Ulas, Waseem Tayab, Yang Minglei, Xie Dong, Chen Chang

机构信息

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China.

Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Transl Lung Cancer Res. 2021 Feb;10(2):955-964. doi: 10.21037/tlcr-21-44.

Abstract

BACKGROUND

Micropapillary/solid (MP/S) growth patterns of lung adenocarcinoma are vital for making clinical decisions regarding surgical intervention. This study aimed to predict the presence of a MP/S component in lung adenocarcinoma using radiomics analysis.

METHODS

Between January 2011 and December 2013, patients undergoing curative invasive lung adenocarcinoma resection were included. Using the "PyRadiomics" package, we extracted 90 radiomics features from the preoperative computed tomography (CT) images. Subsequently, four prediction models were built by utilizing conventional machine learning approaches fitting into radiomics analysis: a generalized linear model (GLM), Naïve Bayes, support vector machine (SVM), and random forest classifiers. The models' accuracy was assessed using a receiver operating curve (ROC) analysis, and the models' stability was validated both internally and externally.

RESULTS

A total of 268 patients were included as a primary cohort, and 36.6% (98/268) of them had lung adenocarcinoma with an MP/S component. Patients with an MP/S component had a higher rate of lymph node metastasis (18.4% versus 5.3%) and worse recurrence-free and overall survival. Five radiomics features were selected for model building, and in the internal validation, the four models achieved comparable performance of MP/S prediction in terms of area under the curve (AUC): GLM, 0.74 [95% confidence interval (CI): 0.65-0.83]; Naïve Bayes, 0.75 (95% CI: 0.65-0.85); SVM, 0.73 (95% CI: 0.61-0.83); and random forest, 0.72 (95% CI: 0.63-0.81). External validation was performed using a test cohort with 193 patients, and the AUC values were 0.70, 0.72, 0.73, and 0.69 for Naïve Bayes, SVM, random forest, and GLM, respectively.

CONCLUSIONS

Radiomics-based machine learning approach is a very strong tool for preoperatively predicting the presence of MP/S growth patterns in lung adenocarcinoma, and can help customize treatment and surveillance strategies.

摘要

背景

肺腺癌的微乳头/实性(MP/S)生长模式对于做出有关手术干预的临床决策至关重要。本研究旨在使用放射组学分析预测肺腺癌中MP/S成分的存在。

方法

纳入2011年1月至2013年12月期间接受根治性浸润性肺腺癌切除术的患者。使用“PyRadiomics”软件包,我们从术前计算机断层扫描(CT)图像中提取了90个放射组学特征。随后,利用适用于放射组学分析的传统机器学习方法构建了四个预测模型:广义线性模型(GLM)、朴素贝叶斯、支持向量机(SVM)和随机森林分类器。使用受试者工作特征曲线(ROC)分析评估模型的准确性,并在内部和外部验证模型的稳定性。

结果

总共268例患者被纳入作为主要队列,其中36.6%(98/268)患有伴有MP/S成分的肺腺癌。伴有MP/S成分的患者有更高的淋巴结转移率(18.4%对5.3%)以及更差的无复发生存期和总生存期。选择了五个放射组学特征用于模型构建,在内部验证中,四个模型在曲线下面积(AUC)方面实现了可比的MP/S预测性能:GLM为0.74 [95%置信区间(CI):0.65 - 0.83];朴素贝叶斯为0.75(95% CI:0.65 - 0.85);SVM为0.73(95% CI:0.61 - 0.83);随机森林为0.72(95% CI:0.63 - 0.81)。使用一个包含193例患者的测试队列进行外部验证,朴素贝叶斯、SVM、随机森林和GLM的AUC值分别为0.70、0.72、0.73和0.69。

结论

基于放射组学的机器学习方法是术前预测肺腺癌中MP/S生长模式存在的非常强大的工具,并且可以帮助定制治疗和监测策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6057/7947386/813e914c1866/tlcr-10-02-955-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验