Bury Alexander G, Vincent Amy E, Turnbull Doug M, Actis Paolo, Hudson Gavin
Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
Wellcome Open Res. 2020 Dec 2;5:226. doi: 10.12688/wellcomeopenres.16300.2. eCollection 2020.
Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst there are several technologies that are currently available for single-cell analysis, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology's limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria from subcellular compartments. This allows isolation of mitochondria with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment.
线粒体活力对细胞功能至关重要,线粒体功能障碍与越来越多的人类疾病相关。在遗传学、动力学和功能方面的组织和细胞异质性意味着,越来越多的线粒体研究是在单细胞水平上进行的。虽然目前有几种技术可用于单细胞分析,每种技术都有其优点,但它们不容易适用于以亚细胞分辨率研究线粒体。在这里,我们回顾了当前线粒体分离的技术和策略,批判性地讨论了每种技术在未来线粒体研究中的局限性。最后,我们重点介绍并讨论了亚细胞分离技术的最新突破,特别关注能够从亚细胞区室中分离线粒体的纳米技术。这使得能够以前所未有的空间精度分离线粒体,同时对线粒体及其直接细胞环境的破坏最小。