Suppr超能文献

混合数据深度学习在一般医学住院时间的重复预测中的应用:一项推导研究。

Mixed-data deep learning in repeated predictions of general medicine length of stay: a derivation study.

机构信息

Royal Adelaide Hospital, Port Road, Adelaide, SA, 5000, Australia.

University of Adelaide, Adelaide, SA, 5005, Australia.

出版信息

Intern Emerg Med. 2021 Sep;16(6):1613-1617. doi: 10.1007/s11739-021-02697-w. Epub 2021 Mar 16.

Abstract

The accurate prediction of likely discharges and estimates of length of stay (LOS) aid in effective hospital administration and help to prevent access block. Machine learning (ML) may be able to help with these tasks. For consecutive patients admitted under General Medicine at the Royal Adelaide Hospital over an 8-month period, daily ward round notes and relevant discrete data fields were collected from the electronic medical record. These data were then split into training and testing sets (7-month/1-month train/test split) prior to use in ML analyses aiming to predict discharge within the next 2 days, discharge within the next 7 days and an estimated date of discharge (EDD). Artificial neural networks and logistic regression were effective at predicting discharge within 48 h of a given ward round note. These models achieved an area under the receiver operator curve (AUC) of 0.80 and 0.78, respectively. Prediction of discharge within 7 days of a given note was less accurate, with artificial neural network returning an AUC of 0.68 and logistic regression an AUC of 0.61. The generation of an exact EDD remains inaccurate. This study has shown that repeated estimates of LOS using daily ward round notes and mixed-data inputs are effective in the prediction of general medicine discharges in the next 48 h. Further research may seek to prospectively and externally validate models for prediction of upcoming discharge, as well as combination human-ML approaches for generating EDDs.

摘要

准确预测可能的出院人数和估计住院时间(LOS)有助于有效的医院管理,并有助于防止访问阻塞。机器学习(ML)可能能够帮助完成这些任务。在 8 个月的时间里,连续有患者在阿德莱德皇家医院的普通内科接受治疗,每天的病房查房记录和相关的离散数据字段都从电子病历中收集。然后,在将这些数据用于旨在预测未来 2 天内出院、未来 7 天内出院和预计出院日期(EDD)的 ML 分析之前,将这些数据分为训练集和测试集(7 个月/1 个月的训练/测试分割)。人工神经网络和逻辑回归可有效预测给定病房查房记录后 48 小时内的出院情况。这些模型的接收者操作特征曲线(AUC)分别为 0.80 和 0.78。对给定记录 7 天内出院的预测准确性较低,人工神经网络的 AUC 为 0.68,逻辑回归的 AUC 为 0.61。生成确切的 EDD 仍然不准确。本研究表明,使用每日病房查房记录和混合数据输入来重复估计 LOS 可有效预测未来 48 小时内的普通内科出院情况。进一步的研究可能会寻求前瞻性和外部验证用于预测即将出院的模型,以及生成 EDD 的人机 ML 组合方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验