Gadalla Mena N, Greenspon Andrew S, Defo Rodrick Kuate, Zhang Xingyu, Hu Evelyn L
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
Department of Physics, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2021768118.
The negatively charged silicon monovacancy [Formula: see text] in 4H silicon carbide (SiC) is a spin-active point defect that has the potential to act as a qubit in solid-state quantum information applications. Photonic crystal cavities (PCCs) can augment the optical emission of the [Formula: see text], yet fine-tuning the defect-cavity interaction remains challenging. We report on two postfabrication processes that result in enhancement of the [Formula: see text] optical emission from our PCCs, an indication of improved coupling between the cavity and ensemble of silicon vacancies. Below-bandgap irradiation at 785-nm and 532-nm wavelengths carried out at times ranging from a few minutes to several hours results in stable enhancement of emission, believed to result from changing the relative ratio of [Formula: see text] ("dark state") to [Formula: see text] ("bright state"). The much faster change effected by 532-nm irradiation may result from cooperative charge-state conversion due to proximal defects. Thermal annealing at 100 °C, carried out over 20 min, also results in emission enhancements and may be explained by the relatively low-activation energy diffusion of carbon interstitials [Formula: see text], subsequently recombining with other defects to create additional [Formula: see text]s. These PCC-enabled experiments reveal insights into defect modifications and interactions within a controlled, designated volume and indicate pathways to improved defect-cavity interactions.
4H 碳化硅(SiC)中带负电荷的硅单空位[化学式:见原文]是一种自旋活性点缺陷,有潜力在固态量子信息应用中用作量子比特。光子晶体腔(PCC)可以增强[化学式:见原文]的光发射,但精确调节缺陷与腔之间的相互作用仍然具有挑战性。我们报告了两种后处理工艺,它们增强了我们的 PCC 中[化学式:见原文]的光发射,这表明腔与硅空位集合体之间的耦合得到了改善。在 785 纳米和 532 纳米波长下进行的带隙以下照射,照射时间从几分钟到几小时不等,会导致发射稳定增强,据信这是由于[化学式:见原文](“暗态”)与[化学式:见原文](“亮态”)的相对比例发生了变化。532 纳米照射产生的更快变化可能是由于近端缺陷导致的协同电荷态转换。在 100℃下进行 20 分钟的热退火也会导致发射增强,这可能是由于碳间隙原子[化学式:见原文]的相对低激活能扩散,随后与其他缺陷复合以产生额外的[化学式:见原文]所致。这些基于 PCC 的实验揭示了在受控的指定体积内缺陷修饰和相互作用的见解,并指出了改善缺陷与腔相互作用的途径。