Suppr超能文献

利用激光辐照和热退火增强4H碳化硅中硅空位的腔耦合。

Enhanced cavity coupling to silicon vacancies in 4H silicon carbide using laser irradiation and thermal annealing.

作者信息

Gadalla Mena N, Greenspon Andrew S, Defo Rodrick Kuate, Zhang Xingyu, Hu Evelyn L

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

Department of Physics, Harvard University, Cambridge, MA 02138.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2021768118.

Abstract

The negatively charged silicon monovacancy [Formula: see text] in 4H silicon carbide (SiC) is a spin-active point defect that has the potential to act as a qubit in solid-state quantum information applications. Photonic crystal cavities (PCCs) can augment the optical emission of the [Formula: see text], yet fine-tuning the defect-cavity interaction remains challenging. We report on two postfabrication processes that result in enhancement of the [Formula: see text] optical emission from our PCCs, an indication of improved coupling between the cavity and ensemble of silicon vacancies. Below-bandgap irradiation at 785-nm and 532-nm wavelengths carried out at times ranging from a few minutes to several hours results in stable enhancement of emission, believed to result from changing the relative ratio of [Formula: see text] ("dark state") to [Formula: see text] ("bright state"). The much faster change effected by 532-nm irradiation may result from cooperative charge-state conversion due to proximal defects. Thermal annealing at 100 °C, carried out over 20 min, also results in emission enhancements and may be explained by the relatively low-activation energy diffusion of carbon interstitials [Formula: see text], subsequently recombining with other defects to create additional [Formula: see text]s. These PCC-enabled experiments reveal insights into defect modifications and interactions within a controlled, designated volume and indicate pathways to improved defect-cavity interactions.

摘要

4H 碳化硅(SiC)中带负电荷的硅单空位[化学式:见原文]是一种自旋活性点缺陷,有潜力在固态量子信息应用中用作量子比特。光子晶体腔(PCC)可以增强[化学式:见原文]的光发射,但精确调节缺陷与腔之间的相互作用仍然具有挑战性。我们报告了两种后处理工艺,它们增强了我们的 PCC 中[化学式:见原文]的光发射,这表明腔与硅空位集合体之间的耦合得到了改善。在 785 纳米和 532 纳米波长下进行的带隙以下照射,照射时间从几分钟到几小时不等,会导致发射稳定增强,据信这是由于[化学式:见原文](“暗态”)与[化学式:见原文](“亮态”)的相对比例发生了变化。532 纳米照射产生的更快变化可能是由于近端缺陷导致的协同电荷态转换。在 100℃下进行 20 分钟的热退火也会导致发射增强,这可能是由于碳间隙原子[化学式:见原文]的相对低激活能扩散,随后与其他缺陷复合以产生额外的[化学式:见原文]所致。这些基于 PCC 的实验揭示了在受控的指定体积内缺陷修饰和相互作用的见解,并指出了改善缺陷与腔相互作用的途径。

相似文献

1
Enhanced cavity coupling to silicon vacancies in 4H silicon carbide using laser irradiation and thermal annealing.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2021768118.
2
Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4060-4065. doi: 10.1073/pnas.1704219114. Epub 2017 Apr 3.
3
Laser writing of spin defects in nanophotonic cavities.
Nat Mater. 2023 Jun;22(6):696-702. doi: 10.1038/s41563-023-01544-x. Epub 2023 Apr 27.
4
Electrometry by optical charge conversion of deep defects in 4H-SiC.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):7879-7883. doi: 10.1073/pnas.1806998115. Epub 2018 Jul 16.
5
Fabrication of High-Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC.
Nano Lett. 2015 Sep 9;15(9):6202-7. doi: 10.1021/acs.nanolett.5b02542. Epub 2015 Aug 28.
6
Purcell Enhancement and Spin Spectroscopy of Silicon Vacancy Centers in Silicon Carbide Using an Ultrasmall Mode-Volume Plasmonic Cavity.
Nano Lett. 2024 Sep 18;24(37):11669-11675. doi: 10.1021/acs.nanolett.4c03233. Epub 2024 Sep 9.
7
Purcell Enhancement of a Single Silicon Carbide Color Center with Coherent Spin Control.
Nano Lett. 2020 May 13;20(5):3427-3434. doi: 10.1021/acs.nanolett.0c00339. Epub 2020 Mar 31.
8
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H-SiC.
J Phys Condens Matter. 2018 May 10;30(18):185702. doi: 10.1088/1361-648X/aab819. Epub 2018 Mar 20.
9
Arrays of Si vacancies in 4H-SiC produced by focused Li ion beam implantation.
Sci Rep. 2021 Feb 11;11(1):3561. doi: 10.1038/s41598-021-82832-x.
10
Room-temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast.
Natl Sci Rev. 2021 Jul 5;9(5):nwab122. doi: 10.1093/nsr/nwab122. eCollection 2022 May.

引用本文的文献

1
High-Yield Deterministic Focused Ion Beam Implantation of Quantum Defects Enabled by In Situ Photoluminescence Feedback.
Adv Sci (Weinh). 2023 Jun;10(18):e2300190. doi: 10.1002/advs.202300190. Epub 2023 Apr 23.
2
Defect Engineering of Nanomaterials for Catalysis.
Nanomaterials (Basel). 2023 Mar 21;13(6):1116. doi: 10.3390/nano13061116.
3
Study on Purification Technology of Silicon Carbide Crystal Growth Powder.
Materials (Basel). 2022 Nov 18;15(22):8190. doi: 10.3390/ma15228190.

本文引用的文献

1
Purcell Enhancement of a Single Silicon Carbide Color Center with Coherent Spin Control.
Nano Lett. 2020 May 13;20(5):3427-3434. doi: 10.1021/acs.nanolett.0c00339. Epub 2020 Mar 31.
3
Electrical Charge State Manipulation of Single Silicon Vacancies in a Silicon Carbide Quantum Optoelectronic Device.
Nano Lett. 2019 Oct 9;19(10):7173-7180. doi: 10.1021/acs.nanolett.9b02774. Epub 2019 Sep 25.
4
Electrometry by optical charge conversion of deep defects in 4H-SiC.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):7879-7883. doi: 10.1073/pnas.1806998115. Epub 2018 Jul 16.
5
Optical charge state control of spin defects in 4H-SiC.
Nat Commun. 2017 Nov 30;8(1):1876. doi: 10.1038/s41467-017-01993-4.
6
Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4060-4065. doi: 10.1073/pnas.1704219114. Epub 2017 Apr 3.
7
Fabrication of High-Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC.
Nano Lett. 2015 Sep 9;15(9):6202-7. doi: 10.1021/acs.nanolett.5b02542. Epub 2015 Aug 28.
9
Coherent control of single spins in silicon carbide at room temperature.
Nat Mater. 2015 Feb;14(2):164-8. doi: 10.1038/nmat4145. Epub 2014 Dec 1.
10
Polytype control of spin qubits in silicon carbide.
Nat Commun. 2013;4:1819. doi: 10.1038/ncomms2854.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验