Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
Nat Commun. 2017 Nov 30;8(1):1876. doi: 10.1038/s41467-017-01993-4.
Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading the electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. We develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.
碳化硅 (SiC) 的缺陷已成为光学活性基于自旋的量子技术的有利平台。自旋量子比特存在于这些缺陷的特定电荷状态中,控制这些状态的能力可以提供增强的自旋相关读出和长期电荷稳定性。我们研究了 4H-SiC 中两种主要自旋量子比特(空位和硅空位)的这种电荷状态控制,实现了这些缺陷的亮态和暗态之间的双向光电荷转换。我们使用近紫外激发,根据衬底的不同,将空位团簇的光致发光增加了三个数量级,而不会降低电子自旋相干时间。这种电荷转换在低温下可稳定数小时,从而允许对电荷状态的空间和持续图案化。我们开发了一个涉及缺陷和光学过程的综合模型,为改进材料设计和在 SiC 中开发量子应用提供了坚实的基础。