Suppr超能文献

上位性下的表型预测。

Phenotype Prediction Under Epistasis.

机构信息

Center for Integrated Breeding Research, Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Goettingen, Germany.

出版信息

Methods Mol Biol. 2021;2212:105-120. doi: 10.1007/978-1-0716-0947-7_8.

Abstract

Reliable methods of phenotype prediction from genomic data play an increasingly important role in many areas of plant and animal breeding. Thus, developing methods that enhance prediction accuracy is of major interest. Here, we provide three methods for this purpose: (1) Genomic Best Linear Unbiased Prediction (GBLUP) as a model just accounting for additive SNP effects; (2) Epistatic Random Regression BLUP (ERRBLUP) as a full epistatic model which incorporates all pairwise SNP interactions, and (3) selective Epistatic Random Regression BLUP (sERRBLUP) as an epistatic model which incorporates a subset of pairwise SNP interactions selected based on their absolute effect sizes or the effect variances, which is computed based on solutions from the ERRBLUP model. We compared the predictive ability obtained from GBLUP, ERRBLUP, and sERRBLUP with genotypes from a publicly available wheat dataset and respective simulated phenotypes. Results showed that sERRBLUP provides a substantial increase in prediction accuracy compared to the other methods when the optimal proportion of SNP interactions is kept in the model, especially when an optimal proportion of SNP interactions is selected based on the SNP interaction effect sizes. All methods described here are implemented in the R-package EpiGP, which is able to process large-scale genomic data in a computationally efficient way.

摘要

从基因组数据中可靠地预测表型在动植物育种的许多领域中发挥着越来越重要的作用。因此,开发能够提高预测准确性的方法是主要关注点。为此,我们提供了三种方法:(1)仅考虑加性 SNP 效应的基因组最佳线性无偏预测(GBLUP);(2)包含所有 SNP 相互作用的上位性随机回归 BLUP(ERRBLUP);(3)基于 SNP 相互作用的绝对效应大小或基于 ERRBLUP 模型解计算的效应方差选择的子集的上位性随机回归 BLUP(sERRBLUP)。我们比较了 GBLUP、ERRBLUP 和 sERRBLUP 从公共小麦数据集和相应模拟表型获得的预测能力。结果表明,当模型中保留最优比例的 SNP 相互作用时,sERRBLUP 与其他方法相比,提供了显著提高的预测准确性,尤其是当基于 SNP 相互作用效应大小选择最优比例的 SNP 相互作用时。这里描述的所有方法都在 R 包 EpiGP 中实现,该包能够以高效的计算方式处理大规模基因组数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验