Suppr超能文献

在单变量和双变量模型中,考虑上位性可提高表型的基因组预测在不同环境下的准确性。

Accounting for epistasis improves genomic prediction of phenotypes with univariate and bivariate models across environments.

机构信息

Center for Integrated Breeding Research, Animal Breeding and Genetics Group, University of Goettingen, Goettingen, Germany.

International Maize and Wheat Improvement Center (CIMMYT), Texcoco, State of Mexico, Mexico.

出版信息

Theor Appl Genet. 2021 Sep;134(9):2913-2930. doi: 10.1007/s00122-021-03868-1. Epub 2021 Jun 11.

Abstract

The accuracy of genomic prediction of phenotypes can be increased by including the top-ranked pairwise SNP interactions into the prediction model. We compared the predictive ability of various prediction models for a maize dataset derived from 910 doubled haploid lines from two European landraces (Kemater Landmais Gelb and Petkuser Ferdinand Rot), which were tested at six locations in Germany and Spain. The compared models were Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random Regression BLUP (ERRBLUP) accounting for all pairwise SNP interactions, and selective Epistatic Random Regression BLUP (sERRBLUP) accounting for a selected subset of pairwise SNP interactions. These models have been compared in both univariate and bivariate statistical settings for predictions within and across environments. Our results indicate that modeling all pairwise SNP interactions into the univariate/bivariate model (ERRBLUP) is not superior in predictive ability to the respective additive model (GBLUP). However, incorporating only a selected subset of interactions with the highest effect variances in univariate/bivariate sERRBLUP can increase predictive ability significantly compared to the univariate/bivariate GBLUP. Overall, bivariate models consistently outperform univariate models in predictive ability. Across all studied traits, locations and landraces, the increase in prediction accuracy from univariate GBLUP to univariate sERRBLUP ranged from 5.9 to 112.4 percent, with an average increase of 47 percent. For bivariate models, the change ranged from -0.3 to + 27.9 percent comparing the bivariate sERRBLUP to the bivariate GBLUP, with an average increase of 11 percent. This considerable increase in predictive ability achieved by sERRBLUP may be of interest for "sparse testing" approaches in which only a subset of the lines/hybrids of interest is observed at each location.

摘要

基因组预测表型的准确性可以通过将排名最高的 SNP 相互作用纳入预测模型来提高。我们比较了各种预测模型对来自两个欧洲地方品种(Kemater Landmais Gelb 和 Petkuser Ferdinand Rot)的 910 个双单倍体系的玉米数据集的预测能力,这些系在德国和西班牙的 6 个地点进行了测试。比较的模型是基于加性效应的基因组最佳线性无偏预测(GBLUP)、考虑所有 SNP 相互作用的上位随机回归 BLUP(ERRBLUP)和仅考虑 SNP 相互作用子集的选择上位随机回归 BLUP(sERRBLUP)。这些模型在单变量和双变量统计环境中进行了比较,用于环境内和环境间的预测。我们的结果表明,在单变量/双变量模型中对所有 SNP 相互作用进行建模(ERRBLUP)在预测能力方面并不优于相应的加性模型(GBLUP)。然而,在单变量/双变量 sERRBLUP 中仅包含具有最高效应方差的相互作用的子集,可以显著提高与单变量/双变量 GBLUP 的预测能力。总体而言,双变量模型在预测能力方面始终优于单变量模型。在所有研究的性状、地点和地方品种中,从单变量 GBLUP 到单变量 sERRBLUP 的预测准确性提高幅度从 5.9%到 112.4%不等,平均提高 47%。对于双变量模型,从双变量 sERRBLUP 到双变量 GBLUP 的变化范围从-0.3%到+27.9%不等,平均提高 11%。通过 sERRBLUP 实现的预测能力的显著提高可能对“稀疏测试”方法感兴趣,在这些方法中,只有感兴趣的系/杂种的子集在每个地点进行观察。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e93/8354961/a2f4eda6e196/122_2021_3868_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验