Suppr超能文献

高效血细胞分割在血液病检测中的应用

An Efficient Blood-Cell Segmentation for the Detection of Hematological Disorders.

出版信息

IEEE Trans Cybern. 2022 Oct;52(10):10615-10626. doi: 10.1109/TCYB.2021.3062152. Epub 2022 Sep 19.

Abstract

The automatic segmentation of blood cells for detecting hematological disorders is a crucial job. It has a vital role in diagnosis, treatment planning, and output evaluation. The existing methods suffer from the issues like noise, improper seed-point detection, and oversegmentation problems, which are solved here using a Laplacian-of-Gaussian (LoG)-based modified highboosting operation, bounded opening followed by fast radial symmetry (BOFRS)-based seed-point detection, and hybrid ellipse fitting (EF), respectively. This article proposes a novel hybrid EF-based blood-cell segmentation approach, which may be used for detecting various hematological disorders. Our prime contributions are: 1) more accurate seed-point detection based on BO-FRS; 2) a novel least-squares (LS)-based geometric EF approach; and 3) an improved segmentation performance by employing a hybridized version of geometric and algebraic EF techniques retaining the benefits of both approaches. It is a computationally efficient approach since it hybridizes noniterative-geometric and algebraic methods. Moreover, we propose to estimate the minor and major axes based on the residue and residue offset factors. The residue offset parameter, proposed here, yields more accurate segmentation with proper EF. Our method is compared with the state-of-the-art methods. It outperforms the existing EF techniques in terms of dice similarity, Jaccard score, precision, and F1 score. It may be useful for other medical and cybernetics applications.

摘要

用于检测血液系统疾病的血细胞自动分割是一项关键任务。它在诊断、治疗计划和输出评估中起着至关重要的作用。现有的方法存在噪声、种子点检测不当和过分割等问题,本文分别采用基于拉普拉斯算子(LoG)的改进高提升运算、基于有界开运算的快速径向对称(BOFRS)种子点检测和混合椭圆拟合(EF)来解决这些问题。本文提出了一种新的基于混合 EF 的血细胞分割方法,可用于检测各种血液系统疾病。我们的主要贡献是:1)基于 BO-FRS 的更准确的种子点检测;2)一种新颖的基于最小二乘(LS)的几何 EF 方法;3)通过采用保留两种方法优点的几何和代数 EF 技术的混合版本,提高分割性能。这是一种计算效率高的方法,因为它混合了非迭代几何和代数方法。此外,我们建议根据残差和残差偏移因子来估计半轴。这里提出的残差偏移参数通过适当的 EF 可实现更准确的分割。我们的方法与最先进的方法进行了比较。在骰子相似性、Jaccard 分数、精度和 F1 分数方面,它优于现有的 EF 技术。它可能对其他医学和控制论应用有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验