Ponraj Anitha, Nagaraj Palanigurupackiam, Balakrishnan Duraisamy, Srinivasu Parvathaneni Naga, Shafi Jana, Kim Wonjoon, Ijaz Muhammad Fazal
Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India.
Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil.
Digit Health. 2025 Jan 17;11:20552076241313161. doi: 10.1177/20552076241313161. eCollection 2025 Jan-Dec.
Breast cancer encompasses various subtypes with distinct prognoses, necessitating accurate stratification methods. Current techniques rely on quantifying gene expression in limited subsets. Given the complexity of breast tissues, effective detection and classification of breast cancer is crucial in medical imaging. This study introduces a novel method, MPa-DCAE, which uses a multi-patch-based deep convolutional auto-encoder (DCAE) framework combined with VGG19 to detect and classify breast cancer in histopathology images.
The proposed MPa-DCAE model leverages the hierarchical feature extraction capabilities of VGG19 within a DCAE framework, designed to capture intricate patterns in histopathology images. By using a multi-patch approach, regions of interest are extracted from pathology images to facilitate localized feature learning, enhancing the model's discriminatory power. The auto-encoder component enables unsupervised feature learning, increasing resilience and adaptability to variations in image features. Experiments were conducted at various magnifications on the CBIS-DDSM and MIAS datasets to validate model performance.
Experimental results demonstrated that the MPa-DCAE model outperformed existing methods. For the CBIS-DDSM dataset, the model achieved a precision of 97.96%, a recall of 94.85%, and an accuracy of 98.36%. For the MIAS dataset, it achieved a precision of 97.99%, a recall of 97.2%, and an accuracy of 98.95%. These results highlight the model's robustness and potential for clinical application in computer-assisted diagnosis.
The MPa-DCAE model, integrating VGG19 and DCAE, proves to be an effective, automated approach for diagnosing breast cancer. Its high accuracy and generalizability make it a promising tool for clinical practice, potentially improving patient care in histopathology-based breast cancer diagnosis.
乳腺癌包含多种具有不同预后的亚型,因此需要准确的分层方法。当前技术依赖于对有限子集内的基因表达进行量化。鉴于乳腺组织的复杂性,在医学成像中有效检测和分类乳腺癌至关重要。本研究引入了一种新方法,即MPa-DCAE,它使用基于多补丁的深度卷积自动编码器(DCAE)框架与VGG19相结合,以在组织病理学图像中检测和分类乳腺癌。
所提出的MPa-DCAE模型利用DCAE框架内VGG19的分层特征提取能力,旨在捕捉组织病理学图像中的复杂模式。通过使用多补丁方法,从病理图像中提取感兴趣区域,以促进局部特征学习,增强模型的辨别能力。自动编码器组件实现无监督特征学习,提高对图像特征变化的弹性和适应性。在CBIS-DDSM和MIAS数据集上以各种放大倍数进行实验,以验证模型性能。
实验结果表明,MPa-DCAE模型优于现有方法。对于CBIS-DDSM数据集,该模型的精度为97.96%,召回率为94.85%,准确率为98.36%。对于MIAS数据集,其精度为97.99%,召回率为97.2%,准确率为98.95%。这些结果突出了该模型在计算机辅助诊断中的稳健性和临床应用潜力。
集成VGG19和DCAE的MPa-DCAE模型被证明是一种有效的乳腺癌自动化诊断方法。其高准确性和通用性使其成为临床实践中有前景的工具,有可能改善基于组织病理学的乳腺癌诊断中的患者护理。