文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A multi-patch-based deep learning model with VGG19 for breast cancer classifications in the pathology images.

作者信息

Ponraj Anitha, Nagaraj Palanigurupackiam, Balakrishnan Duraisamy, Srinivasu Parvathaneni Naga, Shafi Jana, Kim Wonjoon, Ijaz Muhammad Fazal

机构信息

Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India.

Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil.

出版信息

Digit Health. 2025 Jan 17;11:20552076241313161. doi: 10.1177/20552076241313161. eCollection 2025 Jan-Dec.


DOI:10.1177/20552076241313161
PMID:39839961
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11748069/
Abstract

PURPOSE: Breast cancer encompasses various subtypes with distinct prognoses, necessitating accurate stratification methods. Current techniques rely on quantifying gene expression in limited subsets. Given the complexity of breast tissues, effective detection and classification of breast cancer is crucial in medical imaging. This study introduces a novel method, MPa-DCAE, which uses a multi-patch-based deep convolutional auto-encoder (DCAE) framework combined with VGG19 to detect and classify breast cancer in histopathology images. METHODS: The proposed MPa-DCAE model leverages the hierarchical feature extraction capabilities of VGG19 within a DCAE framework, designed to capture intricate patterns in histopathology images. By using a multi-patch approach, regions of interest are extracted from pathology images to facilitate localized feature learning, enhancing the model's discriminatory power. The auto-encoder component enables unsupervised feature learning, increasing resilience and adaptability to variations in image features. Experiments were conducted at various magnifications on the CBIS-DDSM and MIAS datasets to validate model performance. RESULTS: Experimental results demonstrated that the MPa-DCAE model outperformed existing methods. For the CBIS-DDSM dataset, the model achieved a precision of 97.96%, a recall of 94.85%, and an accuracy of 98.36%. For the MIAS dataset, it achieved a precision of 97.99%, a recall of 97.2%, and an accuracy of 98.95%. These results highlight the model's robustness and potential for clinical application in computer-assisted diagnosis. CONCLUSION: The MPa-DCAE model, integrating VGG19 and DCAE, proves to be an effective, automated approach for diagnosing breast cancer. Its high accuracy and generalizability make it a promising tool for clinical practice, potentially improving patient care in histopathology-based breast cancer diagnosis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/1467fc9244fb/10.1177_20552076241313161-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/0c5f18eaa64c/10.1177_20552076241313161-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/c4690f58406e/10.1177_20552076241313161-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/4b8fc5c03650/10.1177_20552076241313161-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/b8768e1fd187/10.1177_20552076241313161-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/4e34136e4d30/10.1177_20552076241313161-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/9ef00cf4ad09/10.1177_20552076241313161-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/0730018e933b/10.1177_20552076241313161-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/f006b032169a/10.1177_20552076241313161-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/1467fc9244fb/10.1177_20552076241313161-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/0c5f18eaa64c/10.1177_20552076241313161-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/c4690f58406e/10.1177_20552076241313161-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/4b8fc5c03650/10.1177_20552076241313161-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/b8768e1fd187/10.1177_20552076241313161-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/4e34136e4d30/10.1177_20552076241313161-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/9ef00cf4ad09/10.1177_20552076241313161-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/0730018e933b/10.1177_20552076241313161-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/f006b032169a/10.1177_20552076241313161-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c45/11748069/1467fc9244fb/10.1177_20552076241313161-fig9.jpg

相似文献

[1]
A multi-patch-based deep learning model with VGG19 for breast cancer classifications in the pathology images.

Digit Health. 2025-1-17

[2]
MOB-CBAM: A dual-channel attention-based deep learning generalizable model for breast cancer molecular subtypes prediction using mammograms.

Comput Methods Programs Biomed. 2024-5

[3]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[4]
MTU: A multi-tasking U-net with hybrid convolutional learning and attention modules for cancer classification and gland Segmentation in Colon Histopathological Images.

Comput Biol Med. 2022-11

[5]
Multi-channel auto-encoders for learning domain invariant representations enabling superior classification of histopathology images.

Med Image Anal. 2023-1

[6]
Attention-enhanced dilated convolution for Parkinson's disease detection using transcranial sonography.

Biomed Eng Online. 2024-7-31

[7]
Enhancing SNR in CEST imaging: A deep learning approach with a denoising convolutional autoencoder.

Magn Reson Med. 2024-12

[8]
AI-Driven Microscopy: Cutting-Edge Approach for Breast Tissue Prognosis Using Microscopic Images.

Microsc Res Tech. 2025-5

[9]
LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images.

Int J Comput Assist Radiol Surg. 2021-9

[10]
A medical image classification method based on self-regularized adversarial learning.

Med Phys. 2024-11

引用本文的文献

[1]
Advanced object detection for smart accessibility: a Yolov10 with marine predator algorithm to aid visually challenged people.

Sci Rep. 2025-7-1

[2]
Advanced internet of things enhanced activity recognition for disability people using deep learning model with nature-inspired optimization algorithms.

Sci Rep. 2025-5-14

本文引用的文献

[1]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

[2]
Breast Tumor Tissue Image Classification Using Single-Task Meta Learning with Auxiliary Network.

Cancers (Basel). 2024-3-30

[3]
ACDSSNet: Atrous Convolution-Based Deep Semantic Segmentation Network for Efficient Detection of Sickle Cell Anemia.

IEEE J Biomed Health Inform. 2024-10

[4]
Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms.

Phys Med. 2023-10

[5]
Classification of breast lesions in ultrasound images using deep convolutional neural networks: transfer learning versus automatic architecture design.

Med Biol Eng Comput. 2024-1

[6]
A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images.

Diagnostics (Basel). 2022-12-30

[7]
An Efficient Detection and Classification of Acute Leukemia Using Transfer Learning and Orthogonal Softmax Layer-Based Model.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[8]
A Deep Learning Method for Breast Cancer Classification in the Pathology Images.

IEEE J Biomed Health Inform. 2022-10

[9]
AAV Induced Expression of Human Rod and Cone Opsin in Bipolar Cells of a Mouse Model of Retinal Degeneration.

Biomed Res Int. 2021-2-9

[10]
Transfer learning for image classification using VGG19: Caltech-101 image data set.

J Ambient Intell Humaniz Comput. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索