Suppr超能文献

用于发育神经机器人学中通过视觉手指识别学习数字的数据库。

A Database for Learning Numbers by Visual Finger Recognition in Developmental Neuro-Robotics.

作者信息

Davies Sergio, Lucas Alexandr, Ricolfe-Viala Carlos, Di Nuovo Alessandro

机构信息

Department of Computing, Sheffield Hallam University, Sheffield, United Kingdom.

Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom.

出版信息

Front Neurorobot. 2021 Mar 2;15:619504. doi: 10.3389/fnbot.2021.619504. eCollection 2021.

Abstract

Numerical cognition is a fundamental component of human intelligence that has not been fully understood yet. Indeed, it is a subject of research in many disciplines, e.g., neuroscience, education, cognitive and developmental psychology, philosophy of mathematics, linguistics. In Artificial Intelligence, aspects of numerical cognition have been modelled through neural networks to replicate and analytically study children behaviours. However, artificial models need to incorporate realistic sensory-motor information from the body to fully mimic the children's learning behaviours, e.g., the use of fingers to learn and manipulate numbers. To this end, this article presents a database of images, focused on number representation with fingers using both human and robot hands, which can constitute the base for building new realistic models of numerical cognition in humanoid robots, enabling a grounded learning approach in developmental autonomous agents. The article provides a benchmark analysis of the datasets in the database that are used to train, validate, and test five state-of-the art deep neural networks, which are compared for classification accuracy together with an analysis of the computational requirements of each network. The discussion highlights the trade-off between speed and precision in the detection, which is required for realistic applications in robotics.

摘要

数字认知是人类智能的一个基本组成部分,目前尚未得到充分理解。事实上,它是许多学科的研究主题,例如神经科学、教育、认知与发展心理学、数学哲学、语言学。在人工智能领域,数字认知的各个方面已通过神经网络进行建模,以复制和分析研究儿童行为。然而,人工模型需要纳入来自身体的现实感官运动信息,以充分模仿儿童的学习行为,例如使用手指来学习和操作数字。为此,本文提出了一个图像数据库,专注于使用人类和机器人的手来表示手指数字,这可以构成构建类人机器人数字认知新现实模型的基础,从而在发育自主智能体中实现基于实际情况的学习方法。本文对数据库中的数据集进行了基准分析,这些数据集用于训练、验证和测试五个最先进的深度神经网络,并将它们的分类准确率进行比较,同时分析每个网络的计算需求。讨论突出了机器人实际应用所需的检测速度和精度之间的权衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4259/7960766/b4f8291f9181/fnbot-15-619504-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验