Boucenna Sofiane, Cohen David, Meltzoff Andrew N, Gaussier Philippe, Chetouani Mohamed
Laboratoire ETIS, UCP, UMR CNRS 8051, 95000 Cergy-Pontoise, France.
Laboratoire ISIR, Université UPMC, CNRS, 75005 Paris, France.
Sci Rep. 2016 Feb 4;6:19908. doi: 10.1038/srep19908.
Prior to language, human infants are prolific imitators. Developmental science grounds infant imitation in the neural coding of actions, and highlights the use of imitation for learning from and about people. Here, we used computational modeling and a robot implementation to explore the functional value of action imitation. We report 3 experiments using a mutual imitation task between robots, adults, typically developing children, and children with Autism Spectrum Disorder. We show that a particular learning architecture--specifically one combining artificial neural nets for (i) extraction of visual features, (ii) the robot's motor internal state, (iii) posture recognition, and (iv) novelty detection--is able to learn from an interactive experience involving mutual imitation. This mutual imitation experience allowed the robot to recognize the interactive agent in a subsequent encounter. These experiments using robots as tools for modeling human cognitive development, based on developmental theory, confirm the promise of developmental robotics. Additionally, findings illustrate how person recognition may emerge through imitative experience, intercorporeal mapping, and statistical learning.
在掌握语言之前,人类婴儿就是积极的模仿者。发展科学将婴儿模仿建立在动作的神经编码基础上,并强调利用模仿向他人学习以及了解他人。在此,我们使用计算建模和机器人实现方式来探索动作模仿的功能价值。我们报告了3个实验,这些实验采用了机器人、成年人、发育正常的儿童以及患有自闭症谱系障碍的儿童之间的相互模仿任务。我们表明,一种特定的学习架构——具体来说,是一种将人工神经网络结合用于(i)视觉特征提取、(ii)机器人的运动内部状态、(iii)姿势识别以及(iv)新奇性检测的架构——能够从涉及相互模仿的互动体验中学习。这种相互模仿体验使机器人能够在后续相遇中识别互动对象。这些基于发展理论将机器人用作模拟人类认知发展工具的实验,证实了发展机器人学的前景。此外,研究结果还说明了人物识别可能如何通过模仿体验、身体间映射和统计学习而出现。