Basu Saptarshi, Kabi Prasenjit, Chaudhuri Swetaprovo, Saha Abhishek
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India.
Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6, Canada.
Phys Fluids (1994). 2020 Dec 1;32(12):123317. doi: 10.1063/5.0037360. Epub 2020 Dec 29.
We isolate a nano-colloidal droplet of surrogate mucosalivary fluid to gain fundamental insights into airborne nuclei's infectivity and viral load distribution during the COVID-19 pandemic. The salt-water solution containing particles at reported viral loads is acoustically trapped in a contactless environment to emulate the drying, flow, and precipitation dynamics of real airborne droplets. Similar experiments validate observations with the surrogate fluid with samples of human saliva samples from a healthy subject. A unique feature emerges regarding the final crystallite dimension; it is always 20%-30% of the initial droplet diameter for different sizes and ambient conditions. Airborne-precipitates nearly enclose the viral load within its bulk while the substrate precipitates exhibit a high percentage (∼80-90%) of exposed virions (depending on the surface). This work demonstrates the leveraging of an inert nano-colloidal system to gain insights into an equivalent biological system.
我们分离出替代黏膜唾液流体的纳米胶体液滴,以深入了解新冠疫情期间空气传播核的传染性和病毒载量分布。含有报告病毒载量颗粒的盐水溶液在非接触环境中通过声学捕获,以模拟真实空气传播液滴的干燥、流动和沉淀动态。类似实验用来自健康受试者的人类唾液样本对替代流体的观察结果进行了验证。关于最终微晶尺寸出现了一个独特特征;对于不同尺寸和环境条件,它始终是初始液滴直径的20%-30%。空气传播沉淀物几乎将病毒载量包裹在其主体内,而底物沉淀物则有高比例(约80-90%)的暴露病毒粒子(取决于表面)。这项工作展示了利用惰性纳米胶体系统来深入了解等效生物系统。