Viana Iara Maíra de Oliveira, Roussel Sabrina, Defrêne Joan, Lima Eliana Martins, Barabé Frédéric, Bertrand Nicolas
Laboratory of Pharmaceutical Technology (FarmaTec), Federal University of Goiás, Goiânia 74605-220, Brazil.
Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Québec G1V 4G2, Canada.
Acta Pharm Sin B. 2021 Apr;11(4):852-870. doi: 10.1016/j.apsb.2021.02.022. Epub 2021 Mar 13.
Since the commercialization of the first liposomes used for drug delivery, Doxil/Caelyx® and Myocet®, tremendous progress has been made in understanding interactions between nanomedicines and biological systems. Fundamental work at the interface of engineering and medicine has allowed nanomedicines to deliver therapeutic small molecules and nucleic acids more efficiently. While nanomedicines are used in oncology for immunotherapy or to deliver combinations of cytotoxics, the clinical successes of gene silencing approaches like patisiran lipid complexes (Onpattro®) have paved the way for a variety of therapies beyond cancer. In parallel, the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the potential of mRNA vaccines to develop immunization strategies at unprecedented speed. To rationally design therapeutic and vaccines, chemists, materials scientists, and drug delivery experts need to better understand how nanotechnologies interact with the immune system. This review presents a comprehensive overview of the innate and adaptative immune systems and emphasizes the intricate mechanisms through which nanomedicines interact with these biological functions.
自从用于药物递送的首批脂质体(多柔比星脂质体/凯素灵®和麦罗西特®)商业化以来,在理解纳米药物与生物系统之间的相互作用方面已经取得了巨大进展。工程学与医学交叉领域的基础研究使得纳米药物能够更有效地递送治疗性小分子和核酸。虽然纳米药物在肿瘤学中用于免疫治疗或递送细胞毒性药物组合,但诸如帕替拉韦脂质复合物(奥帕托罗®)等基因沉默方法的临床成功为癌症以外的多种疗法铺平了道路。与此同时,全球严重急性呼吸综合征冠状病毒2(SARS-CoV-2)大流行凸显了mRNA疫苗以前所未有的速度制定免疫策略的潜力。为了合理设计治疗药物和疫苗,化学家、材料科学家和药物递送专家需要更好地了解纳米技术如何与免疫系统相互作用。本综述全面概述了先天性和适应性免疫系统,并强调了纳米药物与这些生物学功能相互作用的复杂机制。