文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于形状各向异性的表面微滚轮在类血管微形貌上对抗生理流的运动。

Shape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows.

机构信息

Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.

Institute for Biomedical Engineering, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2022090118.


DOI:10.1073/pnas.2022090118
PMID:33753497
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8020797/
Abstract

Surface microrollers are promising microrobotic systems for controlled navigation in the circulatory system thanks to their fast speeds and decreased flow velocities at the vessel walls. While surface propulsion on the vessel walls helps minimize the effect of strong fluidic forces, three-dimensional (3D) surface microtopography, comparable to the size scale of a microrobot, due to cellular morphology and organization emerges as a major challenge. Here, we show that microroller shape anisotropy determines the surface locomotion capability of microrollers on vessel-like 3D surface microtopographies against physiological flow conditions. The isotropic (single, 8.5 µm diameter spherical particle) and anisotropic (doublet, two 4 µm diameter spherical particle chain) magnetic microrollers generated similar translational velocities on flat surfaces, whereas the isotropic microrollers failed to translate on most of the 3D-printed vessel-like microtopographies. The computational fluid dynamics analyses revealed larger flow fields generated around isotropic microrollers causing larger resistive forces near the microtopographies, in comparison to anisotropic microrollers, and impairing their translation. The superior surface-rolling capability of the anisotropic doublet microrollers on microtopographical surfaces against the fluid flow was further validated in a vessel-on-a-chip system mimicking microvasculature. The findings reported here establish the design principles of surface microrollers for robust locomotion on vessel walls against physiological flows.

摘要

表面微滚轮是一种有前途的微机器人系统,由于其速度快,且在血管壁处的流速降低,因此可在循环系统中进行受控导航。虽然在血管壁上的表面推进有助于最大限度地减少强流体力的影响,但由于细胞形态和组织,与微机器人尺寸相当的三维(3D)表面微形貌成为主要挑战。在这里,我们表明微滚轮的形状各向异性决定了微滚轮在类似于血管的 3D 表面微形貌上的表面运动能力,以抵抗生理流动条件。各向同性(单个,8.5 µm 直径的球形颗粒)和各向异性(双体,两个 4 µm 直径的球形颗粒链)磁性微滚轮在平坦表面上产生相似的平移速度,而各向同性微滚轮无法在大多数 3D 打印的类似血管的微形貌上平移。计算流体动力学分析表明,各向同性微滚轮周围会产生更大的流场,导致微形貌附近的阻力更大,与各向异性微滚轮相比,从而损害了它们的平移。在模拟微血管的芯片上血管系统中,进一步验证了各向异性双体微滚轮在微形貌表面上对流体流动具有优越的表面滚动能力。这里报道的研究结果为表面微滚轮在生理流动条件下在血管壁上进行稳健运动建立了设计原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/0e5fc2a4612b/pnas.2022090118fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/b6bda1b6931e/pnas.2022090118fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/cfee7d9b62fb/pnas.2022090118fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/243127e1e9d6/pnas.2022090118fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/dd63c7fce65c/pnas.2022090118fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/1a37172a136c/pnas.2022090118fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/0e5fc2a4612b/pnas.2022090118fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/b6bda1b6931e/pnas.2022090118fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/cfee7d9b62fb/pnas.2022090118fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/243127e1e9d6/pnas.2022090118fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/dd63c7fce65c/pnas.2022090118fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/1a37172a136c/pnas.2022090118fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4986/8020797/0e5fc2a4612b/pnas.2022090118fig06.jpg

相似文献

[1]
Shape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows.

Proc Natl Acad Sci U S A. 2021-3-30

[2]
Size-Dependent Locomotion Ability of Surface Microrollers on Physiologically Relevant Microtopographical Surfaces.

Small. 2023-11

[3]
Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow.

Sci Robot. 2020-5-20

[4]
The mismatch between experimental and computational fluid dynamics analyses for magnetic surface microrollers.

Sci Rep. 2023-6-23

[5]
Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces.

Nat Commun. 2022-10-21

[6]
3D Fabrication of Fully Iron Magnetic Microrobots.

Small. 2019-3-4

[7]
Microwheels on Microroads: Enhanced Translation on Topographic Surfaces.

Sci Robot. 2019-7-31

[8]
Bioinspired 3D Printed Locomotion Devices Based on Anisotropic Friction.

Small. 2018-11-16

[9]
Magnetic polymer composite artificial bacterial flagella.

Bioinspir Biomim. 2014-11-18

[10]
Locomotion of Mexican jumping beans.

Bioinspir Biomim. 2012-5-10

引用本文的文献

[1]
Biohybrid Microrobots Based on Jellyfish Stinging Capsules and Janus Particles for In Vitro Deep-Tissue Drug Penetration.

Small Sci. 2025-2-11

[2]
Microrobotic Swarms for Cancer Therapy.

Research (Wash D C). 2025-4-29

[3]
Rolling vesicles: From confined rotational flows to surface-enabled motion.

Proc Natl Acad Sci U S A. 2025-4

[4]
Surface motion dynamics and swimming control of planar magnetic microswimmers.

Sci Rep. 2025-3-20

[5]
Robotic Microcapsule Assemblies with Adaptive Mobility for Targeted Treatment of Rugged Biological Microenvironments.

ACS Nano. 2025-1-28

[6]
Spatially selective delivery of living magnetic microrobots through torque-focusing.

Nat Commun. 2024-3-9

[7]
System integration of magnetic medical microrobots: from design to control.

Front Robot AI. 2023-12-19

[8]
Multimode microdimer robot for crossing tissue morphological barrier.

iScience. 2023-10-28

[9]
Inductive sensing of magnetic microrobots under actuation by rotating magnetic fields.

PNAS Nexus. 2023-9-12

[10]
Cellular Manipulation Using Rolling Microrobots.

Int Conf Manip Autom Robot Small Scales. 2022-7

本文引用的文献

[1]
Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation.

Sci Robot. 2019-3-20

[2]
Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow.

Sci Robot. 2020-5-20

[3]
Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots.

Adv Mater. 2020-10

[4]
High-Yield Production of Biohybrid Microalgae for On-Demand Cargo Delivery.

Adv Sci (Weinh). 2020-7-2

[5]
Magnetic Actuation of Surface Walkers: The Effects of Confinement and Inertia.

Langmuir. 2020-6-30

[6]
Sperm Micromotors for Cargo Delivery through Flowing Blood.

ACS Nano. 2020-3-24

[7]
Acoustically powered surface-slipping mobile microrobots.

Proc Natl Acad Sci U S A. 2020-2-3

[8]
Cohesive self-organization of mobile microrobotic swarms.

Soft Matter. 2020-2-26

[9]
Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.

Nanomaterials (Basel). 2019-11-22

[10]
Microwheels on Microroads: Enhanced Translation on Topographic Surfaces.

Sci Robot. 2019-7-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索