Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Sci Rep. 2021 Mar 22;11(1):6538. doi: 10.1038/s41598-021-85996-8.
Assessing cell morphology and function, as well as biomaterial performance in cell cultures, is one of the key challenges in cell biology and tissue engineering (TE) research. In TE, there is an urgent need for methods to image actual three-dimensional (3D) cell cultures and access the living cells. This is difficult using established optical microscopy techniques such as wide-field or confocal microscopy. To address the problem, we have developed a new protocol using Optical Projection Tomography (OPT) to extract quantitative and qualitative measurements from hydrogel cell cultures. Using our tools, we demonstrated the method by analyzing cell response in three different hydrogel formulations in 3D with 1.5 mm diameter samples of: gellan gum (GG), gelatin functionalized gellan gum (gelatin-GG), and Geltrex. We investigated cell morphology, density, distribution, and viability in 3D living cells. Our results showed the usability of the method to quantify the cellular responses to biomaterial environment. We observed that an elongated morphology of cells, thus good material response, in gelatin-GG and Geltrex hydrogels compared with basic GG. Our results show that OPT has a sensitivity to assess in real 3D cultures the differences of cellular responses to the properties of biomaterials supporting the cells.
评估细胞形态和功能,以及细胞培养中的生物材料性能,是细胞生物学和组织工程(TE)研究的关键挑战之一。在 TE 中,迫切需要能够对实际的三维(3D)细胞培养物进行成像并访问活细胞的方法。使用传统的光学显微镜技术(如宽场或共聚焦显微镜)很难实现这一目标。为了解决这个问题,我们开发了一种使用光学投影层析成像(OPT)的新方案,从水凝胶细胞培养物中提取定量和定性测量值。使用我们的工具,我们通过分析三种不同水凝胶配方在 3D 中的细胞反应来演示该方法,这些配方的 3D 直径为 1.5 毫米,样本分别为:结冷胶(GG)、明胶功能化结冷胶(明胶-GG)和 Geltrex。我们研究了 3D 活细胞中的细胞形态、密度、分布和活力。结果表明,该方法可用于量化细胞对生物材料环境的反应。与基本 GG 相比,我们观察到在明胶-GG 和 Geltrex 水凝胶中,细胞呈现出伸长的形态,因此材料反应良好。结果表明,OPT 具有敏感性,可在真实的 3D 培养物中评估细胞对支持细胞的生物材料特性的反应差异。