Toufanian Reyhaneh, Zhong Xingjian, Kays Joshua C, Saeboe Alexander M, Dennis Allison M
Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States.
Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.
Chem Mater. 2021 Sep 28;33(18):7527-7536. doi: 10.1021/acs.chemmater.1c02501. Epub 2021 Sep 16.
The focus on heavy metal-free semiconductor nanocrystals has increased interest in ZnSe semiconductor quantum dots (QDs) over the past decade. Reliable and consistent incorporation of ZnSe cores into core/shell heterostructures or devices requires empirical fit equations correlating the lowest-energy electron transition (1S peak) to their size and molar extinction coefficients (). While these equations are known and heavily used for CdSe, CdTe, CdS, PbS, etc., they are not well established for ZnSe and are nonexistent for ZnSe QDs with diameters <3.5 nm. In this study, a series of ZnSe QDs with diameters ranging from 2 to 6 nm were characterized by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), UV-vis spectroscopy, and microwave plasma atomic emission spectroscopy (MP-AES). SAXS-based size analysis enabled the practical inclusion of small particles in the evaluation, and elemental analysis with MP-AES elucidates a nonstoichiometric Zn:Se ratio consistent with zinc-terminated spherical ZnSe QDs. Using these combined results, empirical fit equations correlating QD size with its lowest-energy electron transition (i.e., 1S peak position), Zn:Se ratio, and molar extinction coefficients for 1S peak, 1S integral, and high-energy wavelengths are reported. Finally, the equations are used to track the evolution of a ZnSe core reaction. These results will enable the consistent and reliable use of ZnSe core particles in complex heterostructures and devices.
在过去十年中,对无重金属半导体纳米晶体的关注增加了人们对ZnSe半导体量子点(QDs)的兴趣。要将ZnSe核可靠且一致地整合到核/壳异质结构或器件中,需要经验拟合方程,将最低能量电子跃迁(1S峰)与其尺寸和摩尔消光系数相关联。虽然这些方程在CdSe、CdTe、CdS、PbS等材料中是已知且被大量使用的,但它们在ZnSe中并未得到很好的确立,对于直径<3.5 nm的ZnSe量子点更是不存在。在本研究中,通过小角X射线散射(SAXS)、透射电子显微镜(TEM)、紫外-可见光谱和微波等离子体原子发射光谱(MP-AES)对一系列直径在2至6 nm之间的ZnSe量子点进行了表征。基于SAXS的尺寸分析使得在评估中能够实际纳入小颗粒,而MP-AES的元素分析阐明了与锌端封的球形ZnSe量子点一致的非化学计量Zn:Se比。利用这些综合结果,报告了将量子点尺寸与其最低能量电子跃迁(即1S峰位置)、Zn:Se比以及1S峰、1S积分和高能波长的摩尔消光系数相关联的经验拟合方程。最后,这些方程被用于追踪ZnSe核反应的演变。这些结果将使ZnSe核颗粒能够在复杂的异质结构和器件中得到一致且可靠的应用。