Klinik für Neurochirurgie, Universitätsspital und Universität Zürich, 8091, Zurich, Switzerland.
Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
Sci Rep. 2022 Feb 2;12(1):1798. doi: 10.1038/s41598-022-05883-8.
Interictal High Frequency Oscillations (HFO) are measurable in scalp EEG. This development has aroused interest in investigating their potential as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. The demand for therapy monitoring in epilepsy has kindled interest in compact wearable electronic devices for long-term EEG recording. Spiking neural networks (SNN) have emerged as optimal architectures for embedding in compact low-power signal processing hardware. We analyzed 20 scalp EEG recordings from 11 pediatric focal lesional epilepsy patients. We designed a custom SNN to detect events of interest (EoI) in the 80-250 Hz ripple band and reject artifacts in the 500-900 Hz band. We identified the optimal SNN parameters to detect EoI and reject artifacts automatically. The occurrence of HFO thus detected was associated with active epilepsy with 80% accuracy. The HFO rate mirrored the decrease in seizure frequency in 8 patients (p = 0.0047). Overall, the HFO rate correlated with seizure frequency (rho = 0.90 CI [0.75 0.96], p < 0.0001, Spearman's correlation). The fully automated SNN detected clinically relevant HFO in the scalp EEG. This study is a further step towards non-invasive epilepsy monitoring with a low-power wearable device.
间歇高频振荡 (HFO) 可在头皮脑电图中测量。这一发展引起了人们对其作为致痫性、发作倾向、疾病严重程度和治疗反应生物标志物的潜在应用的兴趣。癫痫治疗监测的需求激发了对用于长期脑电图记录的紧凑型可穿戴电子设备的兴趣。尖峰神经网络 (SNN) 已成为嵌入紧凑型低功耗信号处理硬件的最佳架构。我们分析了来自 11 名儿科局灶性病变癫痫患者的 20 个头皮脑电图记录。我们设计了一个定制的 SNN,用于检测 80-250 Hz 棘波带中的感兴趣事件 (EoI),并拒绝 500-900 Hz 带中的伪迹。我们确定了最佳的 SNN 参数来自动检测 EoI 和拒绝伪迹。因此检测到的 HFO 的发生与活跃的癫痫具有 80%的准确率相关。在 8 名患者中,HFO 率反映了癫痫发作频率的降低 (p=0.0047)。总体而言,HFO 率与癫痫发作频率相关 (rho=0.90 CI [0.75 0.96],p<0.0001,Spearman 相关性)。全自动 SNN 检测到头皮脑电图中的临床相关 HFO。这项研究是朝着使用低功耗可穿戴设备进行非侵入性癫痫监测迈出的进一步一步。