Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA.
Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
Sci Rep. 2021 Mar 25;11(1):6922. doi: 10.1038/s41598-021-86382-0.
It has been suggested that the relationship between cognitive function and functional outcome in schizophrenia is mediated by clinical symptoms, while functional outcome is assessed by the Quality of Life Scale (QLS) and the Global Assessment of Functioning (GAF) Scale. To determine the outcome assessed by QLS and GAF, we established a bagging ensemble framework with a feature selection algorithm resulting from the analysis of factors such as 3 clinical symptom scales and 11 cognitive function scores of 302 patients with schizophrenia in the Taiwanese population. We compared our bagging ensemble framework with other state-of-the-art algorithms such as multilayer feedforward neural networks, support vector machine, linear regression, and random forests. The analysis revealed that the bagging ensemble model with feature selection performed best among predictive models in predicting the QLS functional outcome by using 20-item Scale for the Assessment of Negative Symptoms (SANS20) and 17-item Hamilton Depression Rating Scale (HAMD17). Moreover, to predict the GAF outcome, the bagging ensemble model with feature selection performed best among predictive models by using SANS20 and the Positive and Negative Syndrome Scale-Positive (PANSS-Positive) subscale. The study indicates that there are synergistic effects between negative (SANS20) and depressive (HAMD17) symptoms as well as between negative and positive (PANSS-Positive) symptoms in influencing functional outcome of schizophrenia using the bagging ensemble framework with feature selection.
有人提出,精神分裂症认知功能与功能结果之间的关系受临床症状的影响,而功能结果则通过生活质量量表(QLS)和功能全面评估量表(GAF)来评估。为了确定 QLS 和 GAF 评估的结果,我们建立了一个基于 bagging 集成框架的模型,该模型使用了一种特征选择算法,分析了台湾地区 302 名精神分裂症患者的 3 种临床症状量表和 11 种认知功能评分等因素。我们将 bagging 集成框架与其他最先进的算法(如多层前馈神经网络、支持向量机、线性回归和随机森林)进行了比较。分析表明,在使用 20 项阴性症状量表(SANS20)和 17 项汉密尔顿抑郁评定量表(HAMD17)预测 QLS 功能结果的预测模型中,基于特征选择的 bagging 集成模型表现最佳。此外,在使用 SANS20 和阳性和阴性症状量表-阳性(PANSS-Positive)分量表预测 GAF 结果时,基于特征选择的 bagging 集成模型在预测模型中表现最佳。该研究表明,在使用基于特征选择的 bagging 集成框架时,阴性(SANS20)和抑郁(HAMD17)症状以及阴性和阳性(PANSS-Positive)症状之间存在协同作用,会影响精神分裂症的功能结果。