Suppr超能文献

青稞的抗旱性涉及苯丙烷途径的重编程以及UDP-葡萄糖基转移酶对以黄酮类生物合成为靶点的非生物胁迫耐受性的调控。

Drought Resistance in Qingke Involves a Reprogramming of the Phenylpropanoid Pathway and UDP-Glucosyltransferase Regulation of Abiotic Stress Tolerance Targeting Flavonoid Biosynthesis.

作者信息

Xu Congping, Wei Lingling, Huang Sishu, Yang Chunbao, Wang Yulin, Yuan Hongjun, Xu Qijun, Zhang Weiqin, Wang Mu, Zeng Xingquan, Luo Jie

机构信息

College of Tropical Crops, Hainan University, Haikou 570228, China.

State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China.

出版信息

J Agric Food Chem. 2021 Apr 7;69(13):3992-4005. doi: 10.1021/acs.jafc.0c07810. Epub 2021 Mar 26.

Abstract

Tibetan hulless barley (qingke) is an important food crop in the Tibetan plateau. However, it often suffers from drought stress resulting in reduction of food production because of the extreme plateau environment. To elucidate the molecular mechanisms underlying the drought resistance of qingke, the transcriptomic and metabolomic responses of drought-sensitive (D) and drought-resistant (XL) accessions were characterized in experiments with a time course design. The phenylpropanoid pathway was reprogrammed by downregulating the lignin pathway and increasing the biosynthesis of flavonoids and anthocyanins, and this regulation improved plant tolerance for drought stress. Besides, flavonoid glycosides have induced accumulation of metabolites that participated in drought stress resistance. 711410 exhibited the activity of wide-spectrum glucosyltransferase and mediated flavonoid glycosylation to enhance drought stress resistance. Overall, the findings provide insights into the regulatory mechanism underlying drought stress tolerance associated with metabolic reprogramming. Furthermore, the flavonoid-enriched qingke is more tolerant to drought stress and can be used as a functional food to benefit human health.

摘要

青稞是青藏高原一种重要的粮食作物。然而,由于极端的高原环境,它经常遭受干旱胁迫,导致粮食产量下降。为了阐明青稞抗旱的分子机制,在一项具有时间进程设计的实验中,对干旱敏感(D)和抗旱(XL)品种的转录组和代谢组反应进行了表征。苯丙烷途径通过下调木质素途径和增加黄酮类化合物和花青素的生物合成而被重新编程,这种调节提高了植物对干旱胁迫的耐受性。此外,黄酮苷诱导了参与抗旱的代谢物积累。711410表现出广谱葡萄糖基转移酶的活性,并介导黄酮类糖基化以增强抗旱性。总体而言,这些发现为与代谢重编程相关的干旱胁迫耐受性的调控机制提供了见解。此外,富含黄酮类化合物的青稞对干旱胁迫更具耐受性,可作为功能性食品造福人类健康。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验