Bonizzato Marco, James Nicholas D, Pidpruzhnykova Galyna, Pavlova Natalia, Shkorbatova Polina, Baud Laetitia, Martinez-Gonzalez Cristina, Squair Jordan W, DiGiovanna Jack, Barraud Quentin, Micera Silvestro, Courtine Gregoire
Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
Nat Commun. 2021 Mar 26;12(1):1925. doi: 10.1038/s41467-021-22137-9.
A spinal cord injury usually spares some components of the locomotor circuitry. Deep brain stimulation (DBS) of the midbrain locomotor region and epidural electrical stimulation of the lumbar spinal cord (EES) are being used to tap into this spared circuitry to enable locomotion in humans with spinal cord injury. While appealing, the potential synergy between DBS and EES remains unknown. Here, we report the synergistic facilitation of locomotion when DBS is combined with EES in a rat model of severe contusion spinal cord injury leading to leg paralysis. However, this synergy requires high amplitudes of DBS, which triggers forced locomotion associated with stress responses. To suppress these undesired responses, we link DBS to the intention to walk, decoded from cortical activity using a robust, rapidly calibrated unsupervised learning algorithm. This contingency amplifies the supraspinal descending command while empowering the rats into volitional walking. However, the resulting improvements may not outweigh the complex technological framework necessary to establish viable therapeutic conditions.
脊髓损伤通常会保留运动神经回路的某些组成部分。对中脑运动区进行深部脑刺激(DBS)以及对腰脊髓进行硬膜外电刺激(EES),正被用于利用这一保留的神经回路,使脊髓损伤患者能够行走。尽管很有吸引力,但DBS和EES之间的潜在协同作用仍然未知。在此,我们报告在导致腿部瘫痪的严重挫伤性脊髓损伤大鼠模型中,当DBS与EES联合使用时,对运动有协同促进作用。然而,这种协同作用需要高幅度的DBS,这会引发与应激反应相关的强迫性运动。为了抑制这些不良反应,我们将DBS与行走意图相联系,该意图是使用一种强大的、快速校准的无监督学习算法从皮层活动中解码出来的。这种关联性增强了脊髓以上的下行指令,同时使大鼠能够自主行走。然而,由此带来的改善可能无法超过建立可行治疗条件所需的复杂技术框架。